Czechoslovak Journal of Physics B

, Volume 29, Issue 2, pp 208–221 | Cite as

Electrical resistivity and thermoelectric power of amorphous niobium-nickel alloys synthetized by vapour quenching

  • Gh. Ilonca
  • T. W. BarbeeJr.


Thin film samples (10–20 μ thick) of niobium-nickel alloys in the composition range Nb-5 to 95 at % Ni were vapour quenched by R. F. sputtering onto fused quartz substrates held at a temperature of 450 K. It was found that fully glassy alloys were synthetized in the composition range Nb-30 to 85 at % Ni, 2·5 times larger than reported for splat-quenched alloys. Crystallization temperatures exhibited maxima near the eutectic composition and are comparable to those of splat-quenched materials. At room temperature, the electrical resistivityϱ of these alloys lies between 176–210 μΩ cm, and the absolute thermoelectric power S between 2·20–2·52 μV/K. On increasing the temperature from 4·2 to 775 K, up to which the amorphous alloys are stable, the resistivity of the alloy withχ=0·50 decreases by about 1·5%; the value of dϱ/dT progressively increases with increasing Ni content, becoming positive at 0·50<x<0·75. In the range 90 to 400 K, thedS/dT of all alloys lies between 6–8·5×10−3μV deg−2. The electrical behaviour of these alloys may be treated in terms of electron scattering in disordered structures assuming the nearly free-electron model, in a manner analogous to Ziman's theory of electronic transport in liquid metals.


Electrical Resistivity Liquid Metal Crystallization Temperature Composition Range Amorphous Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Duwez P., Willens R. H., Klement W., Jr. J. A. P.31 (1960), 1136.CrossRefGoogle Scholar
  2. [2]
    Duwez P., Trans. A.S.M.60 (1967), 607.Google Scholar
  3. [3]
    Ruhl R. C., Mater. Sci. Eng.1 (1967), 313.CrossRefGoogle Scholar
  4. [4]
    Singhu P. H., Ozaki R., Met. Trans.6 A (1975), 33.Google Scholar
  5. [5]
    Chopra K. L., Thin Film Phenomena. McGraw-Hill, New York 1959.Google Scholar
  6. [6]
    Maddin S., The Use of Thin Films in Physical Investigations. (Ed. by J. C. Anderson.) Academic Press, 1966, p. 433.Google Scholar
  7. [7]
    Gargill G. S., J. A. P.41 (1970), 12.CrossRefGoogle Scholar
  8. [8]
    Marton J. P., Schlesinger M., J. Electrochem. Soc.115 (1968), 16.Google Scholar
  9. [9]
    Ruhl R. C., Giessen B. C., Cohen M., Grant N. J., Acta Met.15 (1967), 1693.CrossRefGoogle Scholar
  10. [10]
    James R. W., The Optical Principles of the Diffraction of X-rays, Vol. II. Cornell University Press, 1965, p. 536.Google Scholar
  11. [11]
    Kaplow R., Strong S., Averbach B., Local Atomic Arrangements Studied by X-fay Diffraction. (Ed. by J. B. Cohen and J. E. Hillard.) Gordon and Breach, New York 1966.Google Scholar
  12. [12]
    Tsuei C. C., Hasegawa R., Solid State Commun.7 (1969), 1581.CrossRefGoogle Scholar
  13. [13]
    Ray R., Giessen B. C., Grant N. J., Scripta Met.2 (1968), 357.CrossRefGoogle Scholar
  14. [14]
    Gargill G. S.,in Solid State Physics, Vol. 30. (Ed. by H. Ehrenreich, F. Seitz and D. Turnbull.) Academic Press, New York 1975, p. 227.Google Scholar
  15. [15]
    Lewis B. G.,Davies H. A., Proc. 2nd Int. Conf. on Rapidly Quenched Metals, 1975, Section II (ed. by N. J. Grant and B. C. Giessen); Mater. Sci. Eng.23 (1976), 179.Google Scholar
  16. [16]
    Turnbull D., Cohen M. H., J. Chem. Phys.34 (1961). 120.CrossRefGoogle Scholar
  17. [17]
    Spaepen F., Turnbull D., Proc. 2nd Int. Conf. on Rapidly Quenched Metals, 1975, Section I (ed. by N. J. Grant and B. C. Giessen), MIT Press, Cambridge 1976, p. 205.Google Scholar
  18. [18]
    Marcus M.,Turnbull D., Proc. 2nd Int. Conf. on Rapidly Quenched Metals, 1975, Section II (ed. by N. J. Grant and B. C. Giessen); Mater. Sci. Eng. 23 (1976), 211.Google Scholar
  19. [19]
    Rivier N., Zuckermann M. J., Phys. Rev. Lett.21 (1968), 904.CrossRefGoogle Scholar
  20. [20]
    Zuckermann M. J., J. Phys.F 2 (1972), L 25.Google Scholar
  21. [21]
    See e.g.Blatt F. J., Physics of Electronic Conduction in Solids McGraw Hill, New York 1968, p. 185.Google Scholar
  22. [22]
    Cochrane R. W., Harris R., Ström-Olson J. O., Zuckermann M. J., Phys. Rev. Lett.35 (1976), 676.CrossRefGoogle Scholar
  23. [23]
    Sinha A. K., Phys. Rev.B 1 (1970), 4541.Google Scholar
  24. [24]
    See e.g.Orbach R., AIP Conf. Proc.24 (1975), 3.Google Scholar
  25. [25]
    Ziman J. M., Phil. Mag.6 (1961), 1013;Google Scholar
  26. [25a]
    Ziman J. M., Adv. Phys.13 (1964), 89;Google Scholar
  27. [25b]
    Bradley C. C., Faber T. E., Wilson E. G., Ziman J. M., Phil. Mag.7 (1965), 865, see alsoGoogle Scholar
  28. [25c]
    Ziman J. M., Phil. Mag.11 (1965), 153.Google Scholar
  29. [26]
    Nagel S. R., Tauc J., Phys. Rev. Lett.35 (1975), 380.CrossRefGoogle Scholar
  30. [27]
    Nagel S. R., Tauc J., Giessen B. C., Solid State Comm.22 (1977), 471.CrossRefGoogle Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1979

Authors and Affiliations

  • Gh. Ilonca
    • 1
  • T. W. BarbeeJr.
    • 2
  1. 1.Faculty of PhysicsBabeş-Bolyai UniversityCluj-NapocaRomania
  2. 2.Center for Materials Research Stanford UniversityStanfordUSA

Personalised recommendations