European Journal of Pediatrics

, Volume 149, Issue 11, pp 792–796 | Cite as

The use of metronidazole in management of methylmalonic and propionic acidaemias

  • G. N. Thompson
  • R. A. Chalmers
  • J. H. Walter
  • J. L. Bresson
  • S. L. Lyonnet
  • P. J. Reed
  • J. M. Saudubray
  • J. V. Leonard
  • D. Halliday
Metabolic Diseases

Abstract

Gut bacteria have been implicated as an important source of propionate in children with inborn errors of propionate metabolism. We have investigated the value of oral metronidazole (10–20 mg/kg per day) in five children with methylmalonic acidaemia (MMA) and four with propionic acidaemia (PA). Urinary excretion of propionate metabolites fell significantly during the treatment in all subjects, the mean decrease being 41% (range 12–76,P<0.01), while mean plasma propionate was reduced from 45.0 μmol/l to 25.1 μmol/l (P<0.05). Substantial reduction of the gut bacterial population was confirmed by lactulose breath hydrogen tests and by stool culture, and stool propionate concentration was reduced in most subjects. Clinical improvement was noted in three children. These results suggest that long-term antimicrobial therapy may offer significant clinical benefit to children with inborn errors of propionate metabolism.

Key words

Methylmalonic acidaemia Propionic acidaemia Metronidazole Gut bacteria Propionate 

Abbreviations

GC

gas chromatographic

MMA

methylmalonic acidaemia

PA

propionic acidaemia

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anil MH, Forbes JM (1980) Feeding in sheep during intraportal infusions of short-chain fatty acids and the effect of liver denervation. J Physiol 298:407–414PubMedGoogle Scholar
  2. 2.
    Armitage P, Berry G (1987) Statistical methods in medical research, 2nd edn. Blackwell, OxfordGoogle Scholar
  3. 3.
    Bain MD, Jones M, Borrielo SP, Reed PJ, Tracey BM, Chalmers RA, Stacey TE (1988) Contribution of gut bacterial metabolism to human metabolic disease. Lancet I:1078–1079CrossRefGoogle Scholar
  4. 4.
    Chalmers RA, Lawson AM (1982) Organic acids in man. Chapman and Hall, LondonGoogle Scholar
  5. 5.
    Harig JM, Soergel KH, Komorowski RA, Wood CM (1989) Treatment of diversion colitis with short-chain-fatty-acid irrigation. N Eng J Med 320:23–28Google Scholar
  6. 6.
    Holdeman LV, Cato EP, Moore WEC (1977) Anaerobe laboratory manual, 4th edn. Polytechnic Institute and State University, Blacksburg, VirginiaGoogle Scholar
  7. 7.
    Hoverstad T, Carlstedt-Duke B, Lingaas E, Midtvedt T, Norin KE, Saxerholt H, Steinbakk M (1986) Influence of ampicillin, clindamycin and metronidazole on faecal excretion of shortchain fatty acids in healthy subjects. Scand J Gastroenterol 21:621–626PubMedGoogle Scholar
  8. 8.
    Hoverstad T, Carlstedt-Duke B, Lingaas E, Norin KE, Saxerholt H, Steinbakk M, Midtvedt T (1986) Influence of oral intake of seven different antibiotics on faecal short-chain fatty acid excretion in healthy subjects. Scand J Gastroenterol 21: 997–1003PubMedGoogle Scholar
  9. 9.
    Oberholzer VG, Levin B, Burgess EA, Young WF (1967) Methylmalonic aciduria. A new inborn error of metabolism leading to chronic metabolic acidosis. Arch Dis Child 42:492–504PubMedGoogle Scholar
  10. 10.
    Roediger WE (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793–798PubMedGoogle Scholar
  11. 11.
    Rosenberg LE (1983) Disorders of propionate and methylmalonate metabolism. In: Stanbury JB, Wyngaarden JB, Frederickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease, 5th edn. McGraw-Hill, New York, pp 474–497Google Scholar
  12. 12.
    Snyderman SE, Sansaricq C, Norton P Phansalkar SV (1972) The use of neomycin in the treatment of methylmalonic acidaemia. Pediatrics 50:925–927PubMedGoogle Scholar
  13. 13.
    Stevenson DK, Cohen RS, Ostrander CR, Shahin SM, Kerner JA, Wetmore DL, Werner SB, Tomczyk M, Johnson JD (1982) A sensitive analytical apparatus for measuring hydrogen production rates. II. Application to studies in human infants. J Pediatr Gastroenterol Nutr 1:233–237PubMedGoogle Scholar
  14. 14.
    Thompson GN, Christodoulou J, Danks DM (1989) Metabolic stroke in methylmalonic acidaemia: a reason for tighter metabolic control? J Pediatr 115:499–500PubMedGoogle Scholar
  15. 15.
    Walter JH, Leonard JV, Thompson GN, Halliday D, Bartlett K (1988) Propionate production from the gut in propionic acidaemia. Lancet II:226Google Scholar
  16. 16.
    Walter JH, Michalski A, Wilson WM, Leonard JB, Barratt TM, Dillon MJ (1989) Chronic renal failure in methylmatlonic acidaemia. Eur J Pediatr 148:344–348CrossRefPubMedGoogle Scholar
  17. 17.
    Walter JH, Thompson GN, Leonard JV, Hetherington CS, Bartlett K (1989) Measurement of propionate turnover in vivo using sodium2H5 and13C-propionate. Clin Chim Acta 182:141–150CrossRefPubMedGoogle Scholar
  18. 18.
    Walter JH, Thompson GN, Leonard JV, Bartlett K, Halliday D (1989) Contribution of aminoacid catabolism to propionate production in methylmalonic acidaemia. Lancet I:1298–1299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • G. N. Thompson
    • 1
  • R. A. Chalmers
    • 2
  • J. H. Walter
    • 4
  • J. L. Bresson
    • 5
  • S. L. Lyonnet
    • 5
  • P. J. Reed
    • 3
  • J. M. Saudubray
    • 5
  • J. V. Leonard
    • 4
  • D. Halliday
    • 1
  1. 1.Nutrition Research GroupClinical Research CentreHarrowUK
  2. 2.Section of Perinatal and Child HealthClinical Research CentreHarrowUK
  3. 3.Microbial Pathogenicity Research GroupClinical Research CentreHarrowUK
  4. 4.Department of Child HealthInstitute of Child HealthLondonUK
  5. 5.Clinique de Génétique MedicaleHôpital des Enfants MaladesParisFrance

Personalised recommendations