Advertisement

Acta Mathematica Hungarica

, Volume 45, Issue 3–4, pp 381–391 | Cite as

Divergence of trigonometric lacunary interpolation

  • P. Nevai
  • P. Vértesi
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Surányi, P. Turán, Notes on interpolation. I,Acta Math. Acad. Sci. Hungar.,6 (1955), 67–86.Google Scholar
  2. [2]
    J. Balázs, P. Turán, Notes on interpolation. II, ibid8 (1957), 201–215.Google Scholar
  3. [3]
    J. Balázs, P. Turán, Notes on interpolation. III, ibid,9 (1958), 195–215.Google Scholar
  4. [4]
    O. Kis, On trigonometric (0, 2) interpolation, ibid,11 (1960), 255–276 (in Russian).Google Scholar
  5. [5]
    A. Sharma, A. K. Varma, Trigonometric interpolation,Duke Math. Journal,32, (1965), 341–357.CrossRefGoogle Scholar
  6. [6]
    P. Vértesi, On the convergence of the trigonometric (o,M) interpolation,Acta Math. Acad. Sci. Hungar.,22 (1971), 117–126.CrossRefGoogle Scholar
  7. [7]
    A. K. Varma, On some problems of P. Turán concerning Birkhoff interpolation,Tran. Amer. Math. Soc. (to appear).Google Scholar
  8. [8]
    P. Vértesi, On certain linear operators. VII,Acta Math. Acad. Sci. Hungar,25, (1974), 67–80.CrossRefGoogle Scholar
  9. [9]
    A. F. Timan,Theory of Approximation of Functions of a Real Variable, Pergaman Press, (New York, 1963).Google Scholar
  10. [10]
    J. Marcinkiewicz, Sur l'interpolation (I),Studia Math.,6 (1936), 1–17.Google Scholar
  11. [11]
    G. Szegő,Orthogonal Polynomials, AMS Coll. Publ., 23 (New York, 1939).Google Scholar
  12. [12]
    P. Vértesi, A problem of P. Turán.Acta Math. Acad. Sci. Hungar.,26 (1975), 153–162.CrossRefGoogle Scholar
  13. [13]
    O. Kis, Remarks on the error of interpolation ibit,20 (1969), 339–346 (Russian).CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1985

Authors and Affiliations

  • P. Nevai
    • 1
  • P. Vértesi
    • 2
  1. 1.Department of MathematicsThe ohio state UniversityColumbusUSA
  2. 2.Mathematical Institute of the Hungarian Academy of SciencesBudapest

Personalised recommendations