Acta Mathematica Hungarica

, Volume 49, Issue 1–2, pp 83–102 | Cite as

Almost sure invariance principles for the empirical process of lacunary sequences

  • S. Dhompongsa


Invariance Principle Empirical Process Lacunary Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Berkes, An almost sure invariance principle for lacunary trigonometric series,Acta Math. Acad. Sci. Hungar.,26 (1975), 209–220.CrossRefGoogle Scholar
  2. [2]
    I. Berkes, On the asymptotic behaviour of Σf(n x x) I and II,Z. Wahrscheinlichkeitscheorie verw. Gebiete,41 (1977), 115–137.CrossRefGoogle Scholar
  3. [3]
    I. Berkes, On the central limit theorems of lacunary trigonometric series,Anal. Math.,4 (1978), 159–180.CrossRefGoogle Scholar
  4. [4]
    I. Berkes, A central limit theorem for trigonometric series with small gaps,Z. Wahrscheinlichkeitstheorie verw. Gebiete,47 (1979), 157–161.CrossRefGoogle Scholar
  5. [5]
    I. Berkes and W. Philipp, Approximation theorems for independent and weakly dependent random vectors,Ann. Probab.,7 (1979), 29–54.Google Scholar
  6. [6]
    I. Berkes and W. Philipp, An almost sure invariance principle for the empirical distribution function of mixing random variables,Z. Wahrscheinlichkeitstheorie verw. Gebiete,41 (1977), 115–137.CrossRefGoogle Scholar
  7. [7]
    Y. S. Chow and H. Teicher,Probability theory, Springer-Verlag (New York, Heidelberg, Berlin, 1978).Google Scholar
  8. [8]
    S. Dhompongsa, A note on the almost sure approximation of the empirical process of weakly dependent random vectors,Yokohama Mathematical Journal,32 (1984).Google Scholar
  9. [9]
    S. Dhompongsa,Limit theorems for weakly dependent random vectors Ph. D. Thesis, University of Illinois (Urbana, 1982).Google Scholar
  10. [10]
    S. Dhompongsa, Uniform laws of the iterated logarithm for Lipschitz classes of functions,Acta Sci. Math. (Szeged), (1986) (to appear).Google Scholar
  11. [11]
    V. G. Gaposhkin, Lacunary series and independent functions,Russian Math. Surveys,21 (1966), 3–82.Google Scholar
  12. [12]
    M. Kac, R. Salem and A. Zygmund, A gap theorem,Trans. Amer. Math. Soc.,63 (1948), 235–243.Google Scholar
  13. [13]
    M. B. Marcus and W. Philipp, Almost sure invariance principles for sums ofB-valued random variables with applications to random Fourier series and the empirical characteristic process. Preprint (1980).Google Scholar
  14. [14]
    W. Philipp, A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables,Ann. Probab.,5 (1977), 319–350.Google Scholar
  15. [15]
    W. Philipp and L. Pinzur, Almost sure approximation theorems for the multivariate empirical process,Z. Wahrscheinlichkeitstheorie verw. Gebiete,54 (1980), 1–13.CrossRefGoogle Scholar
  16. [16]
    W. F. Stout,Almost sure convergence, Academic Press (New York, 1974).Google Scholar
  17. [17]
    S. Takahashi, An asymptotic property of a gap sequence,Proc. Japan Acad.,38 (1962), 101–104.Google Scholar
  18. [18]
    S. Takahashi, The law of the iterated logarithm for a gap sequence with infinite gaps,Tôhoku Math. J.,15 (1963), 281–288.Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • S. Dhompongsa
    • 2
    • 1
  1. 1.Urbana
  2. 2.Chiang Mai UniversityChiang MaiThailand

Personalised recommendations