Skip to main content
Log in

Effects of pCai and pHi on cell-to-cell coupling

  • Published:
Experientia Aims and scope Submit manuscript

Summary

Internal longitudinal resistance (ri), a determinant of cardiac conduction, is affected by changes in intracellular calcium and protons. However, the role and mechanism by which H+ and Ca2+ may modulate ri is uncertain. Cable analysis was performed in cardiac Purkinje fibers to measure ri during various interventions. In some experiments, intracellular pH (pHi) was recorded simultaneously to study the pHi-ri relation. Both intracellular Ca2+ and H+ independently modified ri. However, internal resistance of cardiac fibers was insensitive to pHi changes compared to other tissues. A latent period preceded the pHi-related changes in ri and the amount of change depended upon methodology. The results suggest that direct action of protons on ri may be subordinate to other regulatory processes. Ionic regulation of internal longitudinal resistance may occur by more than one mechanism: i) direct cationic binding to sites on junctional membrane proteins; and ii) H+- or Ca2+-dependent phosphorylation of junctional proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnsdorf, M.F., and Bigger, J.T. Jr, The effect of lidocaine on components of excitability in long mammalian cardic Purkinje fibers. J. Pharmac. exp. Ther.195 (1975) 206–215.

    CAS  Google Scholar 

  2. Arnsdorf, M.F., and Bigger, J.T. Jr, The effect of procaine amide on components of excitability in long mammalian cardiac Purkinje fibers. Circ. Res.38 (1976) 115–122.

    Article  CAS  PubMed  Google Scholar 

  3. Arnsdorf, M.F., and Friedlander, I., The electrophysiologic effects of tolamolol (UK-6558-01) on the passive membrane properties of mammalian cardiac Purkinje fibers. J. Pharmac. exp. Ther.199 (1976) 601–610.

    CAS  Google Scholar 

  4. Arnsdorf, M.F., and Sawicki, G.J., The effects of lysophosphatidylcholine, a toxic metabolite of ischemia, on the components of cardiac excitability in sheep Purkinje fibers. Circ. Res.49 (1981) 16–30.

    Article  CAS  PubMed  Google Scholar 

  5. Arnsdorf, M.F., Schmidt, G.A., and Sawicki, G.J., Effects of encainide on the determinants of cardiac excitability in sheep Purkinje fibers. J. Pharmac. exp. Ther.232 (1985) 40–48.

    CAS  Google Scholar 

  6. Baldwin, K.M., Cardiac gap junction configuration after an uncoupling treatment as a function of time. J. Cell Biol.82 (1979) 66–75.

    Article  CAS  PubMed  Google Scholar 

  7. Barr, L., Dewey, M.M., and Berger W., Propagation of action potentials and the structure of the nexus in cardiac muscle. J. gen. Physiol.48 (1965) 797–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barry, W.H., and Smith, T.W., Mechanisms of transmembrane calcium movement in cultured chick embryo ventricular cells. J. Physiol.325 (1982) 243–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bers, D.M., and Ellis, D., Intracellular calcium and sodium activity in sheep heart Purkinje fibres. Effect of changes of external sodium and intracellular pH. Pflügers Arch.393 (1982) 171–178.

    Article  CAS  PubMed  Google Scholar 

  10. Bredikis, Y.Y., Bukauskas, F.F., and Mutskus, K.S., Effect of hypoxia on cellular interaction in the myocardium. Bull. exp. Biol. Med.82 (1976) 1016–1019.

    Article  Google Scholar 

  11. Byerly, L., and Moody, W.J., Intracellular calcium ions and calcium curents in perfused neurones of the snail,Lymnaea stagnalis. J. Physiol.352 (1984) 637–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coraboeuf, E. and Weidmann, S., Temperature effects on the electrical activity of Purkinje fibres. Helv. physiol. pharm. Acta12 (1954) 32–41.

    CAS  Google Scholar 

  13. Dahl, G., and Isenberg, G., Decoupling of heart muscle cells: correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure. J. Membr. Biol.53 (1980) 63–75.

    Article  CAS  PubMed  Google Scholar 

  14. Délèze, J., Calcium ions and the healing-over of heart fibres, in: Electrophysiology of the Heart, pp. 147–148. Eds B. Taccardi and G. Marchetti. Pergamon, Oxford 1965.

    Google Scholar 

  15. Délèze, J., The recovery of resting potential and input resistance in sheep heart injured by knife or laser. J. Physiol.208 (1970) 547–562.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Délèze, J., and Hervé, J.C., Effect of several uncouplers of cell-to-cell communication on gap junction morphology in mammalian heart. J. Membr. Biol.74 (1983) 203–215.

    Article  PubMed  Google Scholar 

  17. De Mello, W.C., and Dexter, D., Increased rate of sealing in beating heart muscle of the toad. Circ. Res. (1970) 481–489.

  18. De Mello, W.C., Effect of intracellular injection of calcium and strontium on cell communication in heart. J. Physiol.250 (1975) 231–245.

    Article  PubMed  PubMed Central  Google Scholar 

  19. De Mello, W.C., Influence of the sodium pump on intercellular communication in heart fibres: Effect of intracellular injection of sodium ion on electrical coupling. J. Physiol.263 (1976) 171–197.

    Article  PubMed  PubMed Central  Google Scholar 

  20. De Mello, W.C., Effect of 2-4-dinitrophenol on intercellular communication in mammalian cardiac fibres. Pflügers Arch.380 (1979) 267–276.

    Article  PubMed  Google Scholar 

  21. De Mello, W.C., Effect of intracellular injection of La3+ and Mn2+ on electrical coupling of heart cells. Cell Biol. Int. Rep.3 (1979) 113–119.

    Article  PubMed  Google Scholar 

  22. De Mello, W.C., Influence of intracellular injection of H+ on the electrical coupling in cardiac Purkinje fibres. Cell Biol. int. Rep.4 (1980) 51–58.

    Article  PubMed  Google Scholar 

  23. De Mello, W.C., Effect of intracellular injection of cAMP on the electrical coupling of mammalian cardiac cells. Biochem. biophys. Res. Commun.119 (1984) 1001–1007.

    Article  PubMed  Google Scholar 

  24. Dominguez, G., and Fozzard, H.A., Influence of extracellular K+ concentration on cable properties and excitability of sheep cardiac Purkinje fibers. Circ. Res.26, (1970) 565–574.

    Article  CAS  PubMed  Google Scholar 

  25. Ewald, D.A., Williams, A., and Levitan, I.B., Modulation of single Ca2+-dependent K+-channel activity by protein phosphorylation. Nature, Lond.315 (1985) 503–506.

    Article  CAS  PubMed  Google Scholar 

  26. Fabiato, A., and Fabiato, F., Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol.276 (1978) 233–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flagg-Newton, J.L., Dahl, G., and Loewenstein, W.R., Cell junction and cyclic AMP: I. Upregulation of junctional membrane permeability and junctional membrane particles by administration of cyclic nucleotide or phosphodiesterase inhibitor. J. Membr. Biol.63 (1981) 105–121.

    Article  CAS  PubMed  Google Scholar 

  28. Freygang, W.H., and Trautwein, W., The structural implications of the linear electrical properties of cardiac Purkinje strands. J. gen. Physiol.55 (1970) 524–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haas, H.G., Meyer, R., Einwaechter, H.M., and Stockem, W., Intercellular coupling in frog heart muscle. Electrophysiological and morphological aspects. Pflügers Arch.399 (1983) 321–335.

    Article  CAS  PubMed  Google Scholar 

  30. Haiech, J., Klee, C.B., and Demaille, J.G., Effects of cations on affinity of calmodulin for calcium: Ordered binding of calcium ions allows the specific activation of calmodulin-stimulated enzymes. Biochemistry20 (1981) 3890–3897.

    Article  CAS  PubMed  Google Scholar 

  31. Hax, W.M.A., van Venrooij, G.E.P.M., and Vossenberg, J.B.J., Cell communication: A cyclic-AMP mediated phenomenon. J. Membr. Biol.19 (1974) 253–266.

    Article  CAS  PubMed  Google Scholar 

  32. Hertzberg, E.L., Spray, D.C., and Bennett, M.V.L., Reduction of gap junctional conductance by microinjection of antibodies against the 27-kDa liver gap junction polypeptide. Proc. natl Acad. Sci. USA82 (1985) 2412–2416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hofmann, H., Interaction between a normoxic and a hypoxic region of guinea pig and ferret papillary muscles. Circ. Res.56 (1985) 876–883.

    Article  CAS  PubMed  Google Scholar 

  34. Ikeda, K., and Hiraoka, M., Effects of hypoxia on passive electrical properties of canine ventricular muscle. Pflügers Arch.393 (1982) 45–50.

    Article  CAS  PubMed  Google Scholar 

  35. Inui, J., and Imamura, H., Effects of bufetolol and propranolol on active and passive membrane properties of dog papillary muscle. Jap. J. Pharmac.26 (1976) 639–647.

    Article  CAS  Google Scholar 

  36. Jones, L.R., Sarcolemmal enzymes mediating β-adrenergic effects on the heart. Curr. Topics Membr. Trans.25 (1985) 11–41.

    Article  CAS  Google Scholar 

  37. Kass, R.S., and Tsien, R.W., Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J. gen. Physiol.66 (1975) 169–192.

    Article  CAS  PubMed  Google Scholar 

  38. Kléber, A.G., Effects of sucrose solution on longitudinal tissue resistivity of trabecular muscle from mammalian heart. Pflügers Arch.345 (1973) 195–205.

    Article  PubMed  Google Scholar 

  39. Langer, G.A., and Frank, J.S., Lanthanum in heart cell culture. Effect on calcium exchange correlated with its localization. J. Cell Biol.54 (1972) 441–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, K.S., and Tsien, R.W., Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature, Lond.302 (1983) 790–794.

    Article  CAS  PubMed  Google Scholar 

  41. Loewenstein, W.R., Nakas, M., and Socolar, S.J., Junctional membrane uncoupling. Permeability transformations at a cell membrane junction. J. gen. Physiol.50 (1967) 1865–1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meech, R.W., Intracellular calcium injection causes increased potassium conductance inAplysia nerve cells. Comp. Biochem. Physiol.42A (1972) 493–499.

    Article  Google Scholar 

  43. Nishiye, H., Mashima, H., and Ishida, A., Ca binding of isolated cardiac nexus membranes related to intercellular uncoupling. Jap. J. Physiol.30 (1980) 131–136.

    Article  CAS  Google Scholar 

  44. Ochi, R., Electrical uncoupling by Sr action potentials in cardiac muscle. Experientia33 (1977) 1187–1188.

    Article  CAS  PubMed  Google Scholar 

  45. Page, E., Structural approaches to permeability of cardiac gap junctions, in: Normal and Abnormal Conduction in the Heart, pp. 29–41. Eds A. Paes de Carvalho, B.F. Hoffman and M. Lieberman. Futura, New York 1982.

    Google Scholar 

  46. Peracchia, C., and Peracchia, L.L., Gap junction dynamics: Reversible effects of divalent cations. J. Cell Biol.87 (1980) 708–718.

    Article  CAS  PubMed  Google Scholar 

  47. Peracchia, C., and Peracchia, L.L., Gap junction dynamics: Reversible effects of hydrogen ions. J. Cell Biol.87 (1980) 719–727.

    Article  CAS  PubMed  Google Scholar 

  48. Pressler, M.L., Cable properties and intracellular pH of sheep Purkinje fibers during CO2 alterations. Circulation72 (1985) III–36.

    Google Scholar 

  49. Pressler, M.L., Elharrar, V., and Bailey, J.C., Effects of extracellular calcium ions, verapamil, and lanthanum on active and passive properties of canine cardiac Purkinje fibers. Circ. Res.51 (1982) 637–651.

    Article  CAS  PubMed  Google Scholar 

  50. Reber, W.R., and Weingart, R., Influence of internal pH on the slow inward current and the contraction of Purkinje fibres from mammalian heart. Experientia35 (1979) 926.

    Google Scholar 

  51. Reber, W.R., and Weingart, R., Ungulate cardiac Purkinje fibres: The influence of intracellular pH on the electrical cell-to-cell coupling. J. Physiol.328 (1982) 87–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reeves, J.P., and Sutko, J.L., Sodium-calcium ion exchange in cardiac membrane vesicles. Proc. natl. Acad. Sci. USA76 (1979) 590–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Revel, J.P., and Karnovsky, M.J., Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol.33 (1967) C7-C12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rose, B., and Loewenstein, W.R., Permeability of cell junction depends on local cytoplasmic calcium activity. Nature, Lond.254 (1975) 250–252.

    Article  CAS  PubMed  Google Scholar 

  55. Rose, B., and Rick, R., Intracellular pH, intracellular free Ca, and junctional cell-cell coupling. J. Membr. Biol.44 (1978) 377–415.

    Article  CAS  PubMed  Google Scholar 

  56. Saez, J.C., Spray, D.C., Nairn, A.C., Hertzberg, E., Greengard, P., and Bennett, M.V.L., cAMP increases junctional conductance and stimulates phosphorylation of the 27-kDa principal gap junction polypeptide. Proc. natl Acad. Sci. USA83 (1986) 2473–2477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shibata, Y., and Page, E., Gap junctional structure in intact and cut sheep cardiac Purkinje fibers: A freeze-fracture study of Ca2+-induced resealing. J. Ultrastr. Res.75 (1981) 195–204.

    Article  CAS  Google Scholar 

  58. Shoshan, V., MacLennan, D.H., and Wood, D.S., A proton gradient controls a calcium-release channel in sarcoplasmic reticulum. Proc. natl Acad. Sci. USA78 (1981) 4828–4832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Spray, D.C., Harris, A.L., and Bennett, M.V.L., Gap junctional conductance is a simple and sensitive function of intracellular pH. Science211 (1981) 712–715.

    Article  CAS  PubMed  Google Scholar 

  60. Spray, D.C., Stern, J.H., Harris, A.L., and Bennett, M.V.L., Gap junctional conductance: Comparison of sensitivities to H and Ca ions. Proc. natl Acad. Sci. USA79 (1982) 441–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Spray, D.C., White, R.L., Campos de Carvalho, A., Harris, A.L., and Bennett, M.V.L., Gating of gap junction channels. Biophys. J.45 (1984) 219–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsien, R.W., and Weingart, R., Inotropic effect of cyclic AMP in calf ventricular muscle studied by a cut end method. J. Physiol.260 (1976) 117–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Turin, L., and Warner, A.E., Intracellular pH in earlyXenopus embryos: Its effect on current flow between blastomeres. J. Physiol.300 (1980) 489–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vaughan-Jones, R.D., Lederer, W.J., and Eisner, D.A., Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. Nature, Lond.301 (1983) 522–524.

    Article  CAS  PubMed  Google Scholar 

  65. Vercesi, A., Reynafarje, B., and Lehninger, A.L., Stoichiometry of H+ ejection and Ca2+ uptake coupled to electron transport in rat heart mitochondria. J. biol. Chem.253 (1978) 6379–6385.

    Article  CAS  PubMed  Google Scholar 

  66. Warner, A.E., Guthrie, S.C., and Gilula, N.B., Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature, Lond.311 (1984) 127–131.

    Article  CAS  PubMed  Google Scholar 

  67. Weidmann, S., The electrical constants of Purkinje fibres. J. Physiol.118 (1952) 348–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Weidmann, S., The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle. J. Physiol.187 (1966) 323–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weidmann, S., Electrical coupling between myocardial cells, in: Progress in Brain Research, vol. 31, pp. 275–281. Eds K. Akert and P.G. Waser. Elsevier, Amsterdam 1969.

    Google Scholar 

  70. Weingart, R., The actions of ouabain on intercellular coupling and conduction velocity in mammalian ventricular muscle. J. Physiol.264 (1977) 341–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weingart, R., Hess, P., and Reber, W.R., Influence of intracellular pH on cell-to-cell coupling in sheep Purkinje fibers, in: Normal and Abnormal Conduction in the Heart, pp. 73–84. Eds A.P. de Carhalho, B.F. Hoffman and M. Lieberman. Futura, New York 1982.

    Google Scholar 

  72. Wojtczak, J., Contractures and increase in internal longitudinal resistance of cow ventricular muscle induced by hypoxia. Circ. Res.44 (1979) 88–95.

    Article  CAS  PubMed  Google Scholar 

  73. Wojtczak, J., Influence of cyclic nucleotides on the internal longitudinal resistance and contractures in the normal and hypoxic mammalian cardiac muscle. J. molec. cell. Cardiol.14 (1982) 259–265.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pressler, M.L. Effects of pCai and pHi on cell-to-cell coupling. Experientia 43, 1084–1091 (1987). https://doi.org/10.1007/BF01956044

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01956044

Key words

Navigation