Skip to main content
Log in

Conduction of the impulse in the ischemic myocardium — implications for malignant ventricular arrhythmias

  • Published:
Experientia Aims and scope Submit manuscript

Summary

Ventricular arrhythmias occurring consequent to regional disturbances of myocardial perfusion are the most frequent cause of sudden cardiac death. They are related to marked changes of impulse propagation in the ischemic region, which consist of circulating excitation with re-entry. Mapping of the impulse during ventricular tachycardias and ventricular fibrillation shows that the circus movements change their shape and localization from beat to beat. Zones of tissue which block the impulse during one beat may conduct the impulse at a fast rate during the next beat. The main cause underlying this behavior is the depression of the ischemic action potential. This depression is caused by the partial inactivation and the prolonged recovery of the rapid sodium inward current. In addition to the decrease in resting potential, other factors, such as acidosis, contribute to the inactivation of the inward currents generating the upstroke of the action potential. An increase of coupling resistance between myocardial cells and/or an increase of extracellular resistance appear to be less important for explaining conduction disturbances in acute ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adgey, A.A.J., Sudden death, ventricular fibrillation, ventricular defibrillation — historical review and recent advances in: Acute Phase of ischemic Heart Disease and Myocardial Infarction. Ed. A.A.J. Adgey. Martinus Nijhoff, The Hague Boston, London 1982.

    Chapter  Google Scholar 

  2. Allen, D.G., and Orchard, C.H., Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle. J. Physiol., Lond.339 (1983) 107–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allessie, M.A., Bonke, F.I.M., and Schopman, F.J.G., Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The ‘leading circle concept’: a new model of circus movement in cardiac tissue without the involvement, of an anatomical obstacle. Circ. Res.40 (1977) 8–18.

    Google Scholar 

  4. Antzelevitch, C., Jalife, J., and Moe, G., Characteristics of reflection as a mechanism of reentrant arrhythmias and its relationship to parasystole. Circulation61 (1980) 182–191.

    Article  CAS  PubMed  Google Scholar 

  5. Bersohn, M.M., Philipson, K.D., and Fukushima, J.Y., Sodiumcalcium exchange and sarcolemmal enzymes in ischemic rabbit hearts. Am. J. Physiol.242 (1982) C288-C295.

    Article  CAS  PubMed  Google Scholar 

  6. Case, R.B., Felix, A., and Castellana, F.S., Rate of rise of myocardial pCO2 during early ischemia in the dog. Circ. Res.45 (1979) 324–330.

    Article  CAS  PubMed  Google Scholar 

  7. Cranefield, P.F., Wit, A.L., and Hoffman, B.F., Conduction of the cardiac impulse. III. Characteristics of very slow conduction. J. gen. Physiol.59 (1972) 227–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cranefield, P.F., The conduction of the cardiac impulse. Futura Publishing Company, Mount Kisco, New York 1975.

    Google Scholar 

  9. Dennis, S.C., McCarthy, J., Keding, B., and Opie, L., Lactate efflux from the ischemic myocardium: the influence of pH. J. molec. cell. Cardiol.18 (Suppl I) (1986) 346.

    Google Scholar 

  10. Downar, E., Janse, M.J., Durrer, D., The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart. Circulation,56 (1977) 217–224.

    Article  CAS  PubMed  Google Scholar 

  11. Garry, W.E., Auricular fibrillation. Physiol., Rev.4 (1924) 215–250.

    Article  Google Scholar 

  12. Gettes, L.S., and Reuter, H., Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J. Physiol., Lond.240 (1974) 703–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harris, A.S., Potassium and experimental coronary occlusion. Am. Heart J.71 (1966) 797–802.

    Article  CAS  PubMed  Google Scholar 

  14. Hill, J.L., and Gettes, L.S., Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation61 (1980) 768–778.

    Article  CAS  PubMed  Google Scholar 

  15. Hirche, H., Franz, C., Bös, L., Bissig, R., Lang, R., and Schramm, M., Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J. molec. cell. Cardiol.12 (1980) 579–593.

    Article  CAS  Google Scholar 

  16. Janse, M.J., van Capelle, F.J.L., Morsink, H., Kléber A.G., Wilms-Schopmann, F.J.G., Cardinal, R., Naumann d'Alnoncourt, C. and Durrer, D., Flow of ‘injury current’ and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts: Evidence for two different mechanisms. Circ. Res.47 (1980) 151–165.

    Article  CAS  PubMed  Google Scholar 

  17. Janse, M.J., and Kléber, A.G., Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ. Res.49 (1981) 1069–1081.

    Article  CAS  PubMed  Google Scholar 

  18. Kléber, A.G., Janse, M.J., van Capelle, F.J.L., and Durrer, D., Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischemia in the pig heart determined by extracellular and intracellular recordings. Circ. Res.42 (1979) 603–613.

    Article  Google Scholar 

  19. Kléber, A.G., Resting membrane potential, extracellular potassium activity and intracellular sodium activity during acute global ischemia in the isolated guinea pig heart. Circ. Res.52 (1983) 442–450.

    Article  PubMed  Google Scholar 

  20. Kléber, A.G., Extracellular potassium accumulation in acute myocardial ischemia. J. molec. cell. Cardiol.16 (1984) 389–394.

    Article  Google Scholar 

  21. Kléber, A.G., Janse, M.J., Wilms-Schopmann, F.J.G., Wilde, A.A.M., and Coronel, R., Changes in conduction velocity during acute ischemia in ventricular myocardium of the isolated porcine heart. Circulation73 (1986) 189–198.

    Article  PubMed  Google Scholar 

  22. Kléber, A.G. and Riegger, C.B., Electrical constants of arterially perfused rabbit papillary muscle. J. Physiol., Lond. (1986) in press.

  23. Kléber, A.G., Riegger, C.B., and Janse, M.I., Extracellular K+ and H+ shifts in early ischemia mechanisms and relation to changes in impulse propagation. J. molec. cell. Cardiol. (1986) in press.

  24. Kodama, I., Wilde, A., Janse, M.J., Durrer, D., and Yamada, K., Combined effects of hypoxia, hyperkalemia acidosis on membrane action potential and excitability in guinea-pig ventricular muscle. J. molec. cell. Cardiol.16 (1984) 247–260.

    Article  CAS  Google Scholar 

  25. Lewis, T., The mechanism and graphic registration of the heart beat. 3rd edn. Shaw and Sons, London 1925.

    Google Scholar 

  26. McCallister, L.P., Trapukdi, S., and Neely, J.R., Morphometric observation on the effects of ischemia in the isolated perfused rat heart. J. molec. cell. Cardiol.11 (1979) 619–630.

    Article  CAS  Google Scholar 

  27. Mainwood, G.W., and Worsley-Brown, P., The effects of extracellular pH and buffer concentration on the efflux of lactate from frog sartorius muscle. J. Physiol.250 (1975) 1–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mason, M.J., Mainwood, G.W., and Thoden, J.S., The influence of extracellular buffer concentration and proprionate on lactate efflux from frog muscle. Pflügers Arch.406 (1986) 472–479.

    Article  CAS  PubMed  Google Scholar 

  29. Mines, G.R., On circulating excitations in heart muscle and their possible relation to tachycardia and fibrillation. Trans. r. Soc. Can. Section, IV (1914) 45–53.

    Google Scholar 

  30. Moréna, H., Janse, M.J., Fiolet, J.W.T., Krieger, W.J.G., Crijns, H., and Durrer, D., Comparison of the effects of regional ischemia, hypoxia, hyperkalemia and acidosis on intra- and extracellular potentials and metabolism in the isolated porcine heart. Circ. Res.46 (1980) 634–646.

    Article  PubMed  Google Scholar 

  31. Polimeni, P.I., Extracellular space and ionic distribution in rat ventricle. Am. J. Physiol.227 (1974) 676–683.

    Article  CAS  PubMed  Google Scholar 

  32. Rau, E.E., Shine, K.I., and Langer, G.A., Potassium exchange and mechanical performance in anoxic mammalian myocardium. Am. J. Physiol.232 (1977) H85-H94.

    CAS  PubMed  Google Scholar 

  33. Schütz, E., Elektrophysiologie des Herzens bei einphasischer Ableitung. Ergebn. Physiol.38 (1936) 493–620.

    Article  Google Scholar 

  34. Scherlag, B.J., El-Sherif, N., Hope, R.R., and Lazzara, R., Characterization and localization of ventricular arrhythmias resulting from myocardial ischemia and infarction. Circ. Res.35 (1974) 372–383.

    Article  CAS  PubMed  Google Scholar 

  35. Stephenson, S.E., Cole, R.K., Parrish, T.F., Bauer, F.M., Johnson, I.T., Kochtitzky, M., Anderson, J.S., Hibbitt, L.L., McCartly J.J., Young, E.R., Wilson, J.R., Meiers, N.H., Neador, C.K., Ball, O.T., and Neneely, G.R., Ventricular fibrillation during and after coronary occulusion. Incidence and protection afforded by various drugs. Am. J. Cardiol.5 (1960) 77–87.

    Article  Google Scholar 

  36. Tranum-Jensen, J., Jansc, M.J., Fiolet, J.W.T., Krieger, W.J.G., Naumann-D'Alnoncourt, C., and Durrer, D., Tissue osmolality, cell swelling, and reperfusion in acute regional myocardial ischemia in the isolated porcine heart. Circ. Res.49 (1981) 364–381.

    Article  CAS  PubMed  Google Scholar 

  37. Van den Bos, G.C., and Jan-Strakova, Z., Morphometric measurement of interstitial space in Langendorff-perfused rat hearts. J. Physiol.328 (1982) 69.

    Google Scholar 

  38. Vleugels, A., and Carmeliet, E.E., Hypoxia increases potassium efflux from mammalian myocardium. Experientia32 (1976) 483–484.

    Article  CAS  PubMed  Google Scholar 

  39. Vleugels, A., Vereecke, J., and Carmeliet, E.E., Ionic currents during hypoxia in voltage clamped cat ventricular muscle. Circ. Res.47 (1980) 501–508.

    Article  CAS  PubMed  Google Scholar 

  40. Vogel, M.W., Apstein, C.S., Briggs, L.L., Gaasch, W.H., and Ahn, J., Acute alterations in left ventricular diastolic chamber stiffness. Role of the ‘erectile’ effect of coronary arterial pressure and flow in normal and damaged hearts. Circ. Res.51 (1982) 465–478.

    Article  CAS  PubMed  Google Scholar 

  41. Weidmann, S., The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J. Physiol., Lond.127 (1955) 213–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weidmann, S., Electrical constants of trabecular muscle from mammalian heart. J. Physiol.210 (1970) 1041–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weiss, J., and Shine, K.I., Extracellular K+ accumulation during myocardial ischemia in isolated rabbit heart. Am. J. Physiol.243 (1982) H318-H327.

    CAS  PubMed  Google Scholar 

  44. Wojtczak, J., Contractures and increase in internal longitudinal resistance of cow ventricular muscle induced by hypoxia. Circ. Res.44 (1979) 88–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kléber, A.G. Conduction of the impulse in the ischemic myocardium — implications for malignant ventricular arrhythmias. Experientia 43, 1056–1061 (1987). https://doi.org/10.1007/BF01956039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01956039

Key words

Navigation