Skip to main content
Log in

Practical interest in the detection of functional abnormalities in infants and children with lung disease

  • Review
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

There are new techniques which have been developed in order to assess objective functional data concerning the severity and type of abnormalities in infants and children with lung disease. In the present review some applications of the various techniques are given in connection with deductions, which can be based on such functional findings. Insight into the mechanisms leading to lung disease and the institution of appropriate therapeutic guidelines largely depend on whether the degree of pulmonary hyperinflation or restriction, of bronchial obstruction, of bronchial hyperreactivity, of ventilation inequalities and the function of gas exchange can be objectively evaluated. Recent advances in the non-invasive assessment of lung function in infants and children promises progress in this task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BPD:

bronchopulmonary dysplasia

CF:

cystic fibrosis

FEV1 :

forced expiratory volume in 1 s

Gaw:

airway conductance, plethysmographically determined

MEF50 :

maximal expiratory flow at 50% expired vital capacity

MIF50 :

maximal inspiratory flow at 50% inspired vital capacity

PD65 :

Provocation dose inducing 65% increase of respiratory resistance

Raw:

Airway resistance, plethysmographically determined

Rint :

Respiratory resistance, measured by interruption technique

TGV:

Thoracic gas volume; measuring end-expiratory resting level by the plethysmographic technique

References

  1. Auld PAM, Nelson NM, Cherry RB, Rudolph AJ, Smith CA (1963) Measurement of thoracic gas volume in the newborn infant. J Clin Invest 42:476–483

    PubMed  Google Scholar 

  2. Briscoe WA, Dubois AB (1958) The relationship between airway resistance, airway conductance and lung volumes in subjects of different age and body size. J Clin Invest 37:1279–1285

    PubMed  Google Scholar 

  3. Clements JA, Sharp JT, Johnson RP, Elam JO (1959) Estimation of pulmonary resistance be repetitive interruption of airflow. J Clin Invest 38:1262–1270

    PubMed  Google Scholar 

  4. Doershuk CF, Downs TD, Matthews LW, Lough MD (1970) A method for ventilatory measurements in subjects 1 month to 5 years of age: normal values and observation in disease. Pediatr Res 4:165–177

    PubMed  Google Scholar 

  5. DuBois AB, Botelho SY, Comroe JH Jr (1956) A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and in patients with respiratory disease. J Clin Invest 35:327–335

    PubMed  Google Scholar 

  6. DuBois AB, Botelho SY, Bedell GN, Marshall R, Comroe JH Jr (1959) A rapid plethysmographic method for measuring thoracic gas volume: a comparison with a nitrogen washout method for measuring functional residual capacity in normal subjects. J Clin Invest 35:322–326

    Google Scholar 

  7. Frey U, Kraemer R (1990) Visco-elastic properties of the lung, assessed by the flow-interruption technique in children. Am Rev Respir Dis 141:A714

    Google Scholar 

  8. Frey U, Schibler A, Kraemer R (1992) Changes in postocclusional oscillatory pressure transients after flow interruption during bronchial challenge in healthy and asthmatic children. Am Rev Respir Dis 145:A251

    Google Scholar 

  9. Gaultier CI, Allaire Y, Pappo A, Girard F, Gerbeaux J (1975) Résistance pulmonaire totale chez l'enfant sain et l'enfant asthmatique: Corrélation avec le VEMS et la compliance pulmonaire dynamique. Rév Fr Mal Respir 11:827–831

    Google Scholar 

  10. Geubelle F, Karlberg P, Koch G, Lind J, Wallgren G, Wegelius C (1959) L'aération du poumon chez le noveau-né. Biol Neonat 1:169–172

    PubMed  Google Scholar 

  11. Godfrey S (1983) The “wheezy baby” syndrome. In: Clork TJH, Godfrey S (eds) Asthma, 2nd edn. Chapman and Hall Medical, London, pp 416–418

    Google Scholar 

  12. Hatch DJ, Tayler BW (1976) Thoracic gas volume in early childhood. Arch Dis Child 51:859–864

    PubMed  Google Scholar 

  13. Holmann JC, Schibler A, Kraemer R (1989) Charakteristika der inspiratorischen Fluss-Volumen-Kurven bei Kindern mit Asthma bronchiale und Patienten mit zystischer Fibrose. Schweiz Med Wochenschr 119:1713–1718

    PubMed  Google Scholar 

  14. Jackson AC, Milhorn HT, Norman JR (1974) A reevaluation of interrupter technique for airway resistance measurements. J Appl Physiol 36:264–268

    PubMed  Google Scholar 

  15. Klaus M, Tooley WH, Weaver KH, Clements JA (1962) Lung volumes in the newborn infant. Pediatrics 30:111–116

    PubMed  Google Scholar 

  16. Kraemer R (1990) Intrasubject variability and interindividual sensitivity of whole-body plethysmographic measurements in wheezy infants. Am Rev Respir Dis 141:A286

    Google Scholar 

  17. Kraemer R, Meister B (1985) Fast real-time moment-ratio analysis of multibreath nitrogen washout in children. J Appl Physiol 59:1137–1144

    PubMed  Google Scholar 

  18. Kraemer R, Schöni MH (1990) Ventilatory inequalities, pulmonary function and blood oxygenation in advanced states of cystic fibrosis. Respiration 57:318–324

    PubMed  Google Scholar 

  19. Kraemer R, Heinzen P, Röli HJ, Meister B, Rossi E (1982) Klinische Formen und lungenphysiologische Veränderungen bei Kindern mit Asthma bronchiale. Schweiz Med Wochenschr 112:12—73—79

    Google Scholar 

  20. Kraemer R, Meister B, Schaad UB, Rossi E (1983) Reversibility of lung function abnormalities in children with perennial asthma. J Pediatr 102:347–350

    PubMed  Google Scholar 

  21. Kraemer R, Zehnder M, Meister B (1986) Intrapulmonary gas distribution in healthy children. Respir Physiol 65:127–137

    PubMed  Google Scholar 

  22. Kraemer R, Birrer P, Schöni MH (1988) Dose-response relationship and time course of the response to systemic beta adrenoreceptor agonists in infants with bronchopulmonary disease. Thorax 43:770–776

    PubMed  Google Scholar 

  23. Kraemer R, Frey U, Wirz Sommer C, Russi E (1991) Shortterm effect of albuterol, delivered via a new auxiliary device, in wheezy infants. Am Rev Respir Dis 144:347–351

    Google Scholar 

  24. Kraemer R, Birrer P, Modelska K, Casaulta Aebischer C, Schöni MH (1992) A new baby-spacer-device for aerosolized bronchodilator administration in infants with bronchopulmonary disease. Eur J Pediatr 151:57–60

    PubMed  Google Scholar 

  25. Kraemer R, Casaulta Aebischer C, Frey U, Rüdeberg A (1992) Interrelationship between biometric and lung funciton data in infants with cystic fibrosis (CF). Am Rev Respir Dis 145:A115

    Google Scholar 

  26. Mead J, Whittenberger JL (1954) Evaluation of the airway interruption technique as method for measuring pulmonary airflow resistance. J Appl Physiol 6:408–416

    PubMed  Google Scholar 

  27. Nelson NM, Prodhom LS, Cherry RB, Lipsitz PJ, Smith CA (1963) Pulmonary function in the newborn. V. Trapped gases in the normal infant's lung. J Clin Invest 42:1850–1858

    PubMed  Google Scholar 

  28. Phelan DP, Williams HE (1969) Ventilatory studies in healthy infants. Pediatr Res 3:425–432

    PubMed  Google Scholar 

  29. Radford M (1974) Measurements of airway resistance and thoracic gas volume in infancy. Arch Dis Child 49:611–615

    PubMed  Google Scholar 

  30. Rossier PH (1966) Préface. In: Geubelle F (ed) Contribution à l'étude functionnelle du poumon de l'enfant sain et de l'enfant asthmatique. Editions J. Duculot, S.A. Gembloux, Belgique

    Google Scholar 

  31. Stocks J (1977) The functional growth and development of the lung during the first year of life. Early Hum Dev 1:285–309

    PubMed  Google Scholar 

  32. Stocks J, Godfrey S (1977) Specific airway conductance in relation to postconceptional age during infancy. J Appl Physiol 43:144–154

    PubMed  Google Scholar 

  33. Stocks J, Levy NM, Godfrey S (1977) A new apparatus for the accurate measurement of airway resistance in infancy. J Appl Physiol 43:155–159

    PubMed  Google Scholar 

  34. Thomson AH, Beardsmore CS, Firmin R, Leanage R, Simpson H (1990) Airway function in infants with vascular rings: preoperative and postoperative assessement. Arch Dis Child 65: 171–174

    PubMed  Google Scholar 

  35. Wall MA (1985) Moment analysis of multibreath nitrogen washout in young children. J Appl Physiol 49:274–279

    Google Scholar 

  36. Woolcock AJ, Read J (1965) Improvement in bronchial asthma not reflected in forced expiratory volumes. Lancet 21:134–136

    Google Scholar 

  37. Zaplethal A (1987) Lung function in children and adolescents-methods, reference values. Progr Respir Res No 22, Karger, Basel

    Google Scholar 

  38. Zeltner S, Sennhauser FH, Kraemer R (1986) Epidemiologische Aspekte des Asthma bronchiale im Kindesalter. Schweiz Med Wochenschr 116:1210–1216

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In part presented at the Annual Meeting of the European Society for Pediatric Research, Zürich, September 1–4th, 1991 and at the Postgraduate course on infant lung function testing of the American Thoracic Society, Miami, May 16–21th 1992

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraemer, R. Practical interest in the detection of functional abnormalities in infants and children with lung disease. Eur J Pediatr 152, 382–386 (1993). https://doi.org/10.1007/BF01955891

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01955891

Key words

Navigation