BIT Numerical Mathematics

, Volume 34, Issue 2, pp 288–294 | Cite as

Optimal stochastic quadrature formulas for convex functions

  • E. Novak
  • K. Petras


We study optimal stochastic (or Monte Carlo) quadrature formulas for convex functions. While nonadaptive Monte Carlo methods are not better than deterministic methods, we prove that adaptive Monte Carlo methods are much better.

AMS subject classification

41A55 65C05 65D30 

Key words

numerical integration convex functions adaptive integration Monte Carlo methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Braß,Zur Quadraturtheorie konvexer Funktionen in Numerical Integration, G. Hämmerlin, ed., ISNM 57, 1982, pp. 34–47.Google Scholar
  2. 2.
    K.-J. Förster and K. Petras,On a problem proposed by H. Braß concerning the remainder term in quadrature for convex functions Numer. Math., 57 (1990), pp. 763–777.Google Scholar
  3. 3.
    I. A. Glinkin,Best quadrature formula in the class of convex functions Math. Notes, 35 (1984), pp. 368–374. [Russian original: Mat. Zametki, 35, pp. 697–707.]Google Scholar
  4. 4.
    E. Novak,Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics 1349, Springer, 1988.Google Scholar
  5. 5.
    E. Novak,Quadrature formulas for monotone functions Proc. Amer. Math. Soc., 115 (1992), pp. 59–68.Google Scholar
  6. 6.
    E. Novak,Quadrature formulas for convex classes of functions in Numerical Integration IV, H. Braß and G. Hämmerlin, eds., ISNM 112, 1993, pp. 283–296.Google Scholar
  7. 7.
    K. Petras,Quadrature theory of convex functions in Numerical Integration IV, H. Braß and G. Hämmerlin, eds., ISNM 112, 1993a, pp. 315–329.Google Scholar
  8. 8.
    K. Petras,Gaussian quadrature formulae—second Peano kernels, nodes weights and Bessel functions, 1993b, To appear in Calcolo.Google Scholar
  9. 9.
    J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski,Information-based Complexity, Academic Press, 1988.Google Scholar
  10. 10.
    D. Zwick,Optimal quadrature for convex functions and generalizations in Numerical Integration III, H. Braß and G. Hämmerlin, eds., ISNM 85, 1988, pp. 310–315.Google Scholar

Copyright information

© the BIT Foundation 1994

Authors and Affiliations

  • E. Novak
    • 1
  • K. Petras
    • 2
  1. 1.Mathematisches InstitutUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Institut für Angewandte MathematikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations