, Volume 42, Issue 6, pp 589–594 | Cite as

Patch clamp technique and biophysical study of membrane channels

  • F. Franciolini


The present work describes the patch clamp technique, which first allowed the recording of single channel currents in biological membranes. In particular, it describes procedures for preparation and applications of the four different patch clamp configurations. Briefly, the cell-attached configuration is widely used for investigating channel modulation by transmitters acting via second messengers. The cell-free configurations (inside-out and outside-out), complementary to one another with respect to the orientation of the membrane surface, are particularly indicated for the study of the biophysics (kinetics, conductivity, selectivity, mechanism of permeation and block) of ionic channels. Finally, the whole-cell configuration which, because of the remarkable feature that it allows voltage clamp of very small cells, has given access to a number of physiologically important preparations never studied before.

Key words

Ionic channels patch clamp single channel recording 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adelman, W. J., Jr., (Ed) Biophysics and Physiology of Excitable Membranes. Van Nostrand Reinhold, New York, 1971.Google Scholar
  2. 2.
    Attwell, D., and Gray, P., Patch clamp recording from isolated rods of the salamander retina. J. Physiol.351 (1984) 9P.Google Scholar
  3. 3.
    Bacigalupo, J., and Lisman, J. E., Single-channel currents activated by light inLimulus ventral photoreceptors. Nature304 (1983) 268–270.Google Scholar
  4. 4.
    Benham, C. D., Bolton, T. B., Lang, R. J., and Takewaki, T., The mechanism of action of Ba and TEA on single Ca2+-activated K-channels in arterial and intestinal smooth muscle cell membranes. Pflügers Arch.403 (1985) 120–127.Google Scholar
  5. 5.
    Bevan, S., Gray, P. T. A., and Ritchie, J. M., A calcium-activated cation selective channel in rat cultured Schwann cell. Proc. R. Soc. Lond. B222 (1984) 349–355.Google Scholar
  6. 6.
    Blatz, A. L., and Magleby, K. L., Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle. J. gen. Physiol.84 (1984) 1–23.Google Scholar
  7. 7.
    Brum, G., Osterrieder, W., and Trautwein, W.,β-Adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp. Pflügers Arch.401 (1984) 111–118.Google Scholar
  8. 8.
    Cachelin, A. B., de Peyer, J. E., Kokubun, S., and Reuter, H., Calcium channel modulation by 8-bromo-cyclic AMP in cultured heart cells. Nature304 (1983a) 462–64.Google Scholar
  9. 9.
    Cachelin, A. B., de Peyer, J. E., Kokubun, S., and Reuter, H., Sodium channels in cultured cardiac cells. J. Physiol.340 (1983b) 389–401.Google Scholar
  10. 10.
    Cahalan, M. D., Chandy, K. G., DeCoursey, T. E., and Gupta, S., A voltage-gated potassium channel in human lymphocytes. J. Physiol.358 (1985) 197–237.Google Scholar
  11. 11.
    Colquhoun, D., Neher, E., Reuter, H., and Stevens, C. F., Inward current channels activated by intracellular Ca2+ in cultured cardiac cells. Nature294 (1981) 752–754.Google Scholar
  12. 12.
    Conti, F., and Neher, E., Single channel recordings of K currents in squid axons. Nature285 (1980) 140–143.Google Scholar
  13. 13.
    Corey, D. R., and Stevens, C. F., Science and technology of patch recording electrods, in: Single Channel Recordings, pp. 53–68 Eds B. Sakmann and E. Neher. Plenum Press, New York 1983.Google Scholar
  14. 14.
    Cull-Candy, S. G., Miledi, R., and Parker, I., Single glutamate-activated channels recorded from locust muscle fibres with perfused patch electrodes. J. Physiol.321 (1981) 195–210.Google Scholar
  15. 15.
    DeCoursey, T. E., Chandy, K. G., Gupta, S., and Cahalan, M. D., Voltage-gated K channels in T lymphocytes: a role in mitogenesis? Nature307 (1984) 465–468.Google Scholar
  16. 16.
    Ewald, D. A., Williams, A., and Levitan, I. B., Modulation of single Ca2+-dependent K-channel activity by protein phosphorylation. Nature315 (1985) 503–506.Google Scholar
  17. 17.
    Fenwick, E. M., Marty, A., and Neher, E., A patch-clamp study of bovine chromaffin cells and their sensitivity to acetylcholine. J. Physiol.331 (1982a) 577–597.Google Scholar
  18. 18.
    Fenwick, E. M., Marty, A., and Neher, E., Sodium and calcium channels in bovine chromaffin cells. J. Physiol.331 (1982b) 599–635.Google Scholar
  19. 19.
    Findlay, I., A patch-clamp study of potassium channels and whole-cell current in acinar cells of the mouse lacrimal gland. J. Physiol.350 (1984) 179–195.Google Scholar
  20. 20.
    Gallin, E. K., Calcium- and voltage-activated potassium channels in human macrophages. Biophys. J.45 (1984) 821–825.Google Scholar
  21. 21.
    Grygorczyk, R., Schwarz, W., and Passow, H., Ca2+-activated K channels in human red cells. Biophys J.45 (1984) 693–698.Google Scholar
  22. 22.
    Hagiwara, S., and Ohmori, H., Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp. J. Physiol.331 (1982) 231–251.Google Scholar
  23. 23.
    Hamill, O. P., Potassium and chloride channels in red blood cells, in: Single Channel Recordings, pp. 451–471. Eds B. Sakmann and E. Neher. Plenum Press, New York 1982.Google Scholar
  24. 24.
    Hamill, O. P., Bormann, J., and Sakmann, B., Activation of multiple conductance state chloride channels in spinal neurones by glicine and GABA. Nature305 (1983) 805–808.Google Scholar
  25. 25.
    Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch.391 (1981) 85–100.Google Scholar
  26. 26.
    Hamill, O. P., and Sakmann, B., A cell-free method for recording single-channel currents from biological membranes. J. Physiol.312 (1981) 41–42P.Google Scholar
  27. 27.
    Hille, B., Ionic Channels of Excitable Membranes, Sinauer Associates Inc., Sunderland, Massachusetts 1984.Google Scholar
  28. 28.
    Hodgkin, A. L., The Conduction of the Nervous Impulse, Liverpool University Press 1964.Google Scholar
  29. 29.
    Hodgkin, A. L., and Huxley, A. F., Currents carried by sodium ad potassium ions through the membrane of the giant axon ofLoligo. J. Physiol.116 (1952a) 449–472.Google Scholar
  30. 30.
    Hodgkin, A. L., and Huxley, A. F., The components of the membrane conductance in the giant axon ofLoligo. J. Physiol.116 (1952b) 473–496.Google Scholar
  31. 31.
    Horn, R., and Patlack, J., Single channel current from excised patches of muscle membrane. Proc. natn. Acad. Sci. USA77 (1980) 6930–6934.Google Scholar
  32. 32.
    Horn, R., and Vandenberg, C. A., Statistical properties of single sodium channels. J. gen. Physiol.84 (1984) 505–534.Google Scholar
  33. 33.
    Horn, R., Patlack, J., and Stevens, C. F., Sodium channels need not open before they inactivate. Nature291 (1981a) 226–227.Google Scholar
  34. 34.
    Horn, R., Patlack, J., and Stevens, C. F., The effect of tetramethylammonium on single sodium channel currents. Biophys J.36 (1981b) 321–327.Google Scholar
  35. 35.
    Kameyama, M., Kakei, M., Sato, R., Shibasaki, T., Matsuda, H., and Irisawa, H., Intracellular Na activates a K channel in mammalian cardiac cells. Nature309 (1984) 354–356.Google Scholar
  36. 36.
    Katz, B., Nerve, Muscle, and Synapse. McGraw-Hill, New York 1966.Google Scholar
  37. 37.
    Kostyuk, P. G., and Krishtal, O. A., Separation of sodium and calcium currents in the somatic membrane of mollusc neurons. J. Physiol.270 (1977) 545–568.Google Scholar
  38. 38.
    Kostyuk, P. G., Calcium ionic channels in electrically excitable membrane. Neuroscience5 (1980) 945–959.Google Scholar
  39. 39.
    Krishtal, O. A., and Pidoplichko, V. I., A receptor for protons in the nerve cell membrane. Neuroscience5 (1980) 2325–2327.Google Scholar
  40. 40.
    Kuo, J. F., and Greengard, P., Cyclic nucleotide-dependent protein kinases, IV. Widespread occurrence of adenosin 3′,5′-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc. natn. Acad. Sci. USA64 (1969) 1349–1355.Google Scholar
  41. 41.
    Lee, K. S., Akaike, N., and Brown, A. M., Trypsin inhibits the action of tetrodotoxin on neurones. Nature265 (1977) 751–753Google Scholar
  42. 42.
    Lee, K. S., Akaike, N., and Brown, A. M., The suction pipette method for internal perfusion and voltage clamp in small excitable cells. J. Neurosci. Meth.2 (1980) 51–78.Google Scholar
  43. 43.
    Lux, H. D., and Nagy, K., Single channel Ca2+ currents inHelix pomatia neurons. Pflügers Arch.391 (1981) 252–254.Google Scholar
  44. 44.
    Lux, H. D., Neher, E., and Marty, A., Single channel activity associated with the calcium dependent outward current inHelix pomatia. Pflügers Arch.389 (1981) 293–295.Google Scholar
  45. 45.
    Magleby, K. L., and Pallotta, B. S., Dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle. J. Physiol.344 (1983) 585–604.Google Scholar
  46. 46.
    Marty, A., Ca-dependent K channels with large unitary conductance in cromaffin cell membranes. Nature291 (1981) 497–500.Google Scholar
  47. 47.
    Marty, A., and Neher, E., Ionic channels in cultured rat pancreatic islet cells. J. Physiol.326 (1982) 36–37P.Google Scholar
  48. 48.
    Maruyama, Y., and Petersen, O. H., Single-channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini. Nature299 (1982a) 159–161.Google Scholar
  49. 49.
    Maruyama, Y., and Petersen, O. H., Cholecystokinin activation of single-channel currents is mediated by internal messenger in pancreatic acinar cells. Nature300 (1982b) 61–63.Google Scholar
  50. 50.
    Neher, E., Unit conductance studies in biological membranes, in: Techniques in Cellular Physiology. Ed. P. F. Baker. Elsevier/North-Holland, Amsterdam 1982.Google Scholar
  51. 51.
    Neher, E., and Sakmann, B., Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature260 (1976) 799–802.Google Scholar
  52. 52.
    Noma, A., Sakmann, B., and Trautwein, W., Acetylcholine activation of single muscarinic K+-channels in isolated pacemaker cells of mammalian heart. Nature303 (1983) 250–253.Google Scholar
  53. 53.
    Ohmori, H., Studies of ionic currents in the isolated vestibular hair cell of the chick. J. Physiol.350 (1984) 561–581.Google Scholar
  54. 54.
    Patlack, J. B., Gration, K. A. F., and Usherwood, P. N. R., Single glutamate-activated channels in locust muscle. Nature278 (1979) 643–645.Google Scholar
  55. 55.
    Quinn, P. J., The Molecular Biology of Cell Membranes. University Park Press, Baltimore, 1976.Google Scholar
  56. 56.
    Sakmann, B., and Neher, E., Geometric parameters of pipette and membrane patches, in: Single Channel Recording, pp. 37–51. Eds B. Sakmann and E. Neher. Plenum Press, New York 1983a.Google Scholar
  57. 57.
    Sakmann, B., and Neher, E., (Eds), Single Channel Recording. Plenum Press, New York 1983b.Google Scholar
  58. 58.
    Sakmann, B., and Neher, E., Patch clamp techniques for studying ionic channels in excitable membranes. A. Rev. Physiol.46 (1984) 455–472.Google Scholar
  59. 59.
    Sakmann, B., Noma, A., and Trautwein, W., Acetylcholine activation of single muscarinic K channels in isolated pace-maker cells of the mammalian heart. Nature303 (1983) 250–253.Google Scholar
  60. 60.
    Siegelbaum, S. A., Camardo, J. S., and Kandel, E. R., Serotonin and c-AMP close single K channels inAplysia sensory neurones. Nature299 (1982) 413–417.Google Scholar
  61. 61.
    Sigworth, F. J., Open channel noise. I. Noise in acetylcholine receptor currents suggests conformational fluctuations. Biophys. J.47 (1985) 709–720.Google Scholar
  62. 62.
    Sigworth, F. J., and Neher, E., Single Na channel currents observed in cultured rat muscle cells. Nature287 (1980) 447–449.Google Scholar
  63. 63.
    Won, B. S., Lecar, H., and Adler, M., Single calcium-dependent potassium channels in clonal anterior pituitary cells. Biophys. J.39 (1983) 313–317.Google Scholar
  64. 64.
    Yamamoto, D., and Yeh, J. Z., Kinetics of 9-Aminoacridine block of single Na channels. J. gen. Physiol.84 (1984) 361–378.Google Scholar
  65. 65.
    Yellen, G., Single Ca2+-activated nonselective cation channels in neuroblastoma. Nature296 (1982) 357–359.Google Scholar
  66. 66.
    Yellen, G., Ionic permeation and blockade in Ca2+-activated K channels of bovine chromaffin cells. J. gen. Physiol.84 (1984) 157–186.Google Scholar

Copyright information

© Birkhäuser Verlag 1986

Authors and Affiliations

  • F. Franciolini
    • 1
  1. 1.Dept of Physiology and BiophysicsUniversity of Miami, School of MedicineMiamiUSA

Personalised recommendations