Experientia

, Volume 46, Issue 1, pp 26–40 | Cite as

The role of intracellular messengers in adrenocorticotropin secretion in vitro

  • M. S. King
  • B. J. Baertschi
Reviews

Summary

Adrenocorticotropin (ACTH), an opiomelanocortin peptide, is secreted from anterior pituitary corticotrophs upon stimulation with corticotropin-releasing hormone (CRH), arginine vasopressin (AVP) and several other neuropeptides. CRH, the most potent secretagogue of ACTH, stimulates ACTH secretion and biosynthesis by increasing the production of cyclic adenosine 3′,5′-monophosphate (cAMP) within corticotrophs. AVP, which is a weak secretagogue of ACTH but strongly potentiates CRH-stimulated ACTH secretion, operates through the phosphatidylinositol (PI) transduction pathway. Both CRH and AVP increase cytosolic free [Ca2+] within normal corticotrophs indicating a role for Ca2+ in ACTH secretion. Glucocorticoids inhibit ACTH synthesis by suppressing transcription of the proopiomelanocortin (POMC) gene and attenuate ACTH release by decreasing cAMP accumulation stimulated by CRH. This review focuses on the roles of these intracellular messengers in ACTH secretion from normal anterior pituitary cells in vitro, and discusses the possible interactions between the cAMP, calcium and PI transduction pathways. Future areas of research are suggested such as identification of protein substrates of cAMP-dependent and Ca2+-dependent kinases within normal corticotrophs and evaluation of their role in ACTH biosynthesis and secretion.

Key words

Opiomelanocortin cyclic adenosine 3′,5′-monophosphate (cAMP) calcium phosphatidylinositol (PI) glucocorticoids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abou-Samra, A.-B., Catt, K. J., and Aguilera, G., Biphasic inhibition of adrenocorticotropin release by corticosterone in cultured anterior pituitary cells. Endocrinology119 (1986) 972–977.PubMedGoogle Scholar
  2. 2.
    Abou-Samra, A.-B., Catt, K. J., and Aguilera, G., Calcium-dependent control of corticotropin release in rat anterior pituitary cell cultures. Endocrinology121 (1987) 965–971.PubMedGoogle Scholar
  3. 3.
    Abou-Samra, A.-B., Catt, K. J., and Aguilera, G., Involvement of protein kinase C in the regulation of adrenocorticotropin release from rat anterior pituitary cells. Endocrinology118 (1986) 212–217.PubMedGoogle Scholar
  4. 4.
    Abou-Samra, A.-B., Catt, K. J., and Aguilera, G., Role of arachidonic acid in the regulation of adrenocorticotropin release from rat anterior pituitary cell cultures. Endocrinology119 (1986) 1427–1431.PubMedGoogle Scholar
  5. 5.
    Abou-Samra, A.-B., Catt, K. J., and Aguilera, G., Synthetic atrial natriuretic factors (ANFs) stimulate guanine 3′,5′-monophosphate production but not hormone release in rat pipuitary cells: peptide contamination with a gonadotropin-releasing hormone agonist explains luteinizing hormone-releasing activity of certain ANFs. Endocrinology120 (1987) 18–24.PubMedGoogle Scholar
  6. 6.
    Abou-Samra, A.-B., Harwood, J. P., Manganiello, V. C., Catt, K. J., and Aguilera, G., Phorbol 12-myristate 13-acetate and vasopressin potentiate the effect of corticotropin-releasing factor on cyclic AMP production in rat anterior pituitary cells. J. biol. Chem.262 (1987) 1129–1136.PubMedGoogle Scholar
  7. 7.
    Aguilera, G., Harwood, J. P., Wilson, J. X., Morell, J., Brown, J. H., and Catt, K. J., Mechanisms of action of corticotropin-releasing factor and other regulators of corticotropin release in rat pituitary cells. J. biol. Chem.258 (1983) 8039–8045.PubMedGoogle Scholar
  8. 8.
    Aguilera, G., Wynn, P. C., Harwood, J. P., Hauger, R. L., Millan, M. A., Grewe, C., and Catt, K. J., Receptor-mediated actions of corticotropin-releasing factor in pituitary gland and nervous system. Neuroendocrinology43 (1986) 79–88.PubMedGoogle Scholar
  9. 9.
    Allen, R. G., Herbert, E., Hinman, M., Shibuya, H., Pert, C. B., Coordinate control of corticotropin, β-lipotropin, and β-endorphin release in mouse pituitary cell cultures. Proc. natl Acad. Sci.75 (1978) 4972–4976.PubMedGoogle Scholar
  10. 10.
    Antoni, F. A., Hypothalamic control on adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr. Rev.7 (1986) 351–378.PubMedGoogle Scholar
  11. 11.
    Antoni, F., and Dayanithi, G., Guanosine 3′:5′ cyclic monophosphate and activators of guanylate cyclase inhibit secretagogue-induced corticotropin release by anterior pituitary cells. Biochem. biophys. Res. Commun.158 (1989) 824–830.CrossRefPubMedGoogle Scholar
  12. 12.
    Antoni, F. A., Holmes, M. C., and Jones, M. T., Oxytocin as well as vasopressin potentiate ovine CRF in vitro. Peptides4 (1983) 411–415.CrossRefPubMedGoogle Scholar
  13. 13.
    Antoni, F. A., Holmes, M. C., Makara, G. B., Karteszi, M., and Laszlo, F. A., Evidence that the effects of arginine-8-vasopressin (AVP) on pituitary corticotropin (ACTH) release are mediated by a novel type of receptor. Peptides5 (1984) 519–522.CrossRefPubMedGoogle Scholar
  14. 14.
    Antoni, F. A., Palkovitz, M., Makara, G. B., Linton, E. A., Lowry, P. J., and Kiss, J. Z., Immunoreactive corticotropin-releasing hormone in the hypothalamoinfundicular tract. Neuroendocrinology36 (1983) 415–423.PubMedGoogle Scholar
  15. 15.
    Axelrod, J., and Reisine, T. R., Stress hormones: their interaction and regulation. Science224 (1984) 452–459.PubMedGoogle Scholar
  16. 16.
    Baertschi, A. J., Portal vascular route from hypophysial stalk/neural lobe to adenohypophysis. Am. J. Physiol.239 (1980) R463-R469.PubMedGoogle Scholar
  17. 17.
    Baertschi, A. J., and Friedli, M., A novel type of vasopressin receptor on anterior pituitary corticotrophs? Endocrinology116 (1985) 499–502.PubMedGoogle Scholar
  18. 18.
    Baertschi, A. J., Gähwiler, B., Antoni, F. A., Holmes, M. C., and Makara, G. B., No role of vasopressin in stress-induced ACTH secretion? Nature108 (1984) 85–86.CrossRefGoogle Scholar
  19. 19.
    Baertschi, A. J., Vallet, P., Baumann, J. B., and Girard, J., Neural lobe of pituitary modulates corticotropin release in the rat. Endocrinology106 (1980) 878–882.PubMedGoogle Scholar
  20. 20.
    Baertschi, A. J., Yasumoto, T., Pence, R., and Cronin, M. J., ACTH release in response to CRF, forskolin, maitotoxin, phorbol ester and atrial natriuretic factor (ANF). 1st Int. Congr. Neuroendocr. (1986) Abst. No. 45.Google Scholar
  21. 21.
    Bean, B. P., Two kinds of calcium channel in canine atrial cells. J. gen. Physiol.86 (1985) 1–30.PubMedGoogle Scholar
  22. 22.
    Beny, J.-L., and Baertschi, A. J., Synthetic corticoliberin needs arginine vasopressin for full corticotropin releasing activity. Experientia38 (1982) 1078–1079.PubMedGoogle Scholar
  23. 23.
    Beny, J.-L., and Baertschi, A. J., Oxytocin: major corticotropin-releasing factor secreted from diabetes insipidus rat posterior pituitary in vitro. Neuroendocrinology31 (1980) 261–264.PubMedGoogle Scholar
  24. 24.
    Berridge, M. J., and Irvine, R. F., Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature312 (1984) 315–321.CrossRefGoogle Scholar
  25. 25.
    Bilezikjian, L. M., and Vale, W. W., Glucocorticoids inhibit corticotropin-releasing factor-induced production of adenosine 3′,5′-monophosphate in cultured anterior pituitary cells. Endocrinology113 (1983) 657–662.PubMedGoogle Scholar
  26. 26.
    Blackshear, P. J., Nairn, A. C., and Kuo, J. F., Protein kinases 1988: a current perspective. FASEB J.2 (1988) 2957–2969.PubMedGoogle Scholar
  27. 27.
    Blalock, J. E., Smith, E. M., and Meyer III, W. J., The pituitary-adrenocortical axis and the immune system. Clin. Endocr. Metab.14 (1985) 1021–1038.Google Scholar
  28. 28.
    Bloom, F. E., Battenberg, E. L., Rivier, J., and Vale, W., Corticotropin-releasing factor (CRF) immunoreactive neurons and fibers in rat hypothalamus. Reg. Pept.4 (1982) 43–48.CrossRefGoogle Scholar
  29. 29.
    Brostrom, C. O., Huang, Y.-C., Breckenridge, B. M., Wolff, D. J., Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase. Proc. natl Acad. Sci. USA72 (1975) 64–68.PubMedGoogle Scholar
  30. 30.
    Brownstein, M. J., Russell, J. H., and Gainer, H., Synthesis, transport, and release of posterior pituitary hormones. Science207 (1980) 373–378.PubMedGoogle Scholar
  31. 31.
    Burnstock, G., A basis for distinguishing two types of purinergic receptor, in: Cell Membrane Receptors for Drugs and Hormones: a Multidisciplinary Approach, pp. 107–116. Eds R. W. Straub and L. Bolis. Raven Press, New York 1978.Google Scholar
  32. 32.
    Carvallo, P., and Aguilera, G., Protein kinase C mediates the effect of vasopressin in pituitary corticotrophs. Soc. Neurosci.14 (1988) Abst. No. 442.Google Scholar
  33. 33.
    Casey, P. J., and Gilman, A. G., G protein involvement in receptor-effector coupling. J. biol. Chem.263 (1988) 2577–2580.PubMedGoogle Scholar
  34. 34.
    Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. biol. Chem.257 (1982) 7847–7851.PubMedGoogle Scholar
  35. 35.
    Cerione, R. A., Codina, J., Benovic, J. L., Lefkowitz, R. J., Birnbaumer, L., and Caron, M. G., The mammalianβ 2-adrenergic receptor: reconstitution of functional interactions between pure receptor and pure stimulatory nucleotide binding protein of the adenylate cyclase system. Biochemistry23 (1984) 4519–4525.CrossRefPubMedGoogle Scholar
  36. 36.
    Cheung, W. Y., Calmodulin plays a pivotal role in cellular regulation. Science200 (1980) 19–27.Google Scholar
  37. 37.
    Cheung, W. Y., Bradham, L. S., Lynch, T. J., Lin, Y. M., and Tallant, E. A., Protein activator of cyclic 3′:5′-nucleotide phosphodiesterase of bovine or rat brain also activates its adenylate cyclase. Biochem. biophys. Res. Commun.66 (1975) 1055–1062.CrossRefPubMedGoogle Scholar
  38. 38.
    Childs, G. V., Marchetti, C., and Brown, A. M., Involvement of sodium and two types of calcium channels in the regulation of adrenocorticotropin release. Endocrinology120 (1987) 2059–2069.PubMedGoogle Scholar
  39. 39.
    Childs, G. V., Unabia, G., Burke, J. A., and Marchetti, C., Secretion from corticotropes after avidin-fluorescein stains for biotinylated ligands (CRF or AVP). Am. J. Physiol.252 (1987) E347-E356.PubMedGoogle Scholar
  40. 40.
    Chretien, M., and Seidah, N. G., Chemistry and biosynthesis of pro-opiomelanocortin: ACTH, MSH's, endorphins and their related peptides. Molec. cell. Biochem.34 (1981) 101–127.PubMedGoogle Scholar
  41. 41.
    Cochet, M., Chang, A. C. Y., and Cohen, S. N., Characterization of the structural gene and putative 5′-regulatory sequences for human proopiomelanocortin. Nature297 (1982) 335–339.CrossRefPubMedGoogle Scholar
  42. 42.
    Cohen, C. J., and McCarthy, R. T., Differential effects of dihydropyridines on two populations of Ca2+ channel in anterior pituitary cells. Biophys. J.47 (1985) 513a.Google Scholar
  43. 43.
    Creutz, C. E., Zaks, W. J., Hamman, H. C., and Martin, W. H., The roles of Ca2+-dependent membrane-binding proteins in the regulation and mechanism of exocytosis, in: Cell Fusion, pp. 45–68. Ed. A. E. Sowers. Plenum Press, New York 1987.Google Scholar
  44. 44.
    Cronin, M. J., Zysk, J. R., and Baertschi, A. J., Protein kinase C potentiates corticotropin releasing factor stimulated cyclic AMP in pituitary. Peptides7 (1986) 935–938.CrossRefPubMedGoogle Scholar
  45. 45.
    Dallman, M. F., and Yates, F. E., Dynamic asymmetries in the corticosteroid feedback path and distribution-metabolism-binding elements of the adrenocortical system. Ann. N.Y. Acad. Sci.156 (1969) 696–721.PubMedGoogle Scholar
  46. 46.
    Dartois, E., and Bouton, M. M., Role of calcium on TPA-induced secretion of ACTH and PGE2 by pituitary cells: effect of dexamethasone. Biochem. biophys. Res. Commun.138 (1986) 323–329.CrossRefPubMedGoogle Scholar
  47. 47.
    De Souza, E. B., Perrin, M. H., Rivier, J., Vale, W., and Kuhar, M. J., Corticotropin-releasing factor receptors in rat pituitary gland: autoradiographic localization. Brain Res.296 (1984) 202–207.CrossRefPubMedGoogle Scholar
  48. 48.
    De Souza, E. B., Perrin, M. H., Whitehouse, P. J., Rivier, J., Vale, W., and Kuhar, M. J., Corticotropin-releasing factor receptors in human pituitary gland: autoradiographic localization. Neuroendocrinology40 (1985) 419–422.PubMedGoogle Scholar
  49. 49.
    Dornhorst, A., Carlson, D. E., Seif, S. M., Robinson, A. G., Zimmerman, E. A., and Gann, D. S., Control of release of adrenocorticotropin and vasopressin by the supraoptic and paraventricular nuclei. Endocrinology108 (1981) 1420–1424.PubMedGoogle Scholar
  50. 50.
    Douglas, W. W., Involvement of calcium in exocytosis and the exocytosis-vesiculation sequence. Biochem. Soc. Symp.39 (1974) 1–28.PubMedGoogle Scholar
  51. 51.
    Drouin, J., Chamberland, M., Charron, J., Jeannotte, L., and Nemer, M., Structure of the rat pro-opiomelanocortin (POMC) gene. FEBS Lett.193 (1985) 54–58.CrossRefPubMedGoogle Scholar
  52. 52.
    Dunlap, K., Holz, G. G., and Rane, S. G., G proteins as regulators of ion channel function. TINS10 (1987) 241–244.Google Scholar
  53. 53.
    Eberwine, J. H., Jonassen, J. A., Evinger, M. J. Q., and Roberts, J. L., Complex transcriptional regulation by glucocorticoids and corticotropin-releasing hormone of proopiomelanocortin gene expression in rat pituitary cultures. DNA6 (1987) 483–492.PubMedGoogle Scholar
  54. 54.
    Eipper, B. A., and Mains, R. E., Phosphorylation of pro-adrenocorticotropin/endorphin-derived peptides. J. biol. Chem.257 (1982) 4907–4915.PubMedGoogle Scholar
  55. 55.
    Emeric-Sauval, E., Corticotropin-releasing factor (CRF)—a review. Psychoneuroendocrinology11 (1986) 277–294.CrossRefPubMedGoogle Scholar
  56. 56.
    Fleischer, N., Donald, R. A., and Butcher, R. W., Involvement of adenosine 3′, 5′-monophosphate in release of ACTH. Am. J. Physiol.217 (1969) 1287–1291.PubMedGoogle Scholar
  57. 57.
    Fleischer, N., and Vale, W., Inhibition of vasopressin-induced ACTH release from the pituitary by glucocorticoids in vitro. Endocrinology83 (1968) 1232–1236.PubMedGoogle Scholar
  58. 58.
    Gagner, J.-P., and Drouin, J., Opposite regulation of pro-opiomelanocortin gene transcription by glucocorticoids and CRH. Molec. cell. Endocr.40 (1985) 25–32.CrossRefPubMedGoogle Scholar
  59. 59.
    Gaillard, R. C., Schoenenberg, P., Favrod-Coune, C. A., Muller, A. F., Marie, J., Bockaert, J., and Jard, S., Properties of rat anterior pituitary vasopressin receptors: relation to adenylate cyclase and the effect of corticotropin-releasing factor. Proc. natl Acad. Sci. USA81 (1984) 2907–2911.PubMedGoogle Scholar
  60. 60.
    Gann, D. S., Ward, D. G., Baertschi, A. J., Carlson, D. E., and Maran, J. W., Neural control of ACTH release in response to hemorrhage. Ann. N.Y. Acad. Sci.297 (1977) 477–497.PubMedGoogle Scholar
  61. 61.
    Geisow, M. J., and Walker, J. H., New proteins involved in cell regulation by Ca2+ and phospholipids. TIBS11 (1986) 420–423.Google Scholar
  62. 62.
    Gibbs, D. M., Measurement of hypothalamic corticotropin-releasing factors in hypophyseal portal blood. Fedn Proc.44 (1985) 203–206.Google Scholar
  63. 63.
    Gibbs, D. M., and Vale, W., Presence of corticotropin releasing factor-like immunoreactivity in hypophysial portal blood. Endocrinology111 (1982) 1418–1420.PubMedGoogle Scholar
  64. 64.
    Gibbs, D. M., Vale, W., Rivier, J., and Yen, S. S. C., Oxytocin potentiates the ACTH-releasing activity of CRF(41) but not vasopressin. Life Sci.34 (1984) 2245–2249.CrossRefPubMedGoogle Scholar
  65. 65.
    Giguere, V., and Labrie, F., Additive effects of epinephrine and corticotropin-releasing factor (CRF) on adrenocorticotropin release in rat anterior pituitary cells. Biochem. biophys. Res. Commun.110 (1983) 456–462.CrossRefPubMedGoogle Scholar
  66. 66.
    Giguere, V., and Labrie, F., Vasopressin potentiates cyclic AMP accumulation and ACTH release induced by corticotropin-releasing factor (CRF) in rat anterior pituitary cells in culture. Endocrinology111 (1982) 1752–1754.PubMedGoogle Scholar
  67. 67.
    Giguere, V., Labrie, F., Cote, J., Coy, D. H., Sueiras-Diaz, J., and Schally, A. V., Stimulation of cyclic AMP accumulation and corticotropin release by synthetic ovine corticotropin-releasing factor in rat anterior pituitary cells: site of glucocorticoid action. Proc. natl Acad. Sci.79 (1982) 3466–3469.PubMedGoogle Scholar
  68. 68.
    Giguere, V., Lefevre, G., and Labrie, F., Site of calcium requirement for stimulation of ACTH release in rat anterior pituitary cells in culture by synthetic ovine corticotropin-releasing factor. Life Sci.31 (1982) 3057–3062.CrossRefPubMedGoogle Scholar
  69. 69.
    Gillies, G. E., Linton, E. A., and Lowry, P. J., Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature299 (1982) 355–357.CrossRefPubMedGoogle Scholar
  70. 70.
    Guild, S., and Reisine, T., Molecular mechanisms of corticotropin-releasing factor stimulation of calcium mobilization and adrenocorticotropin release from anterior pituitary cells. J. Pharmac. exp. Therap.241 (1987) 125–130.Google Scholar
  71. 71.
    Guillon, G., Gaillard, R. C., Kehrer, P., Shoenenberg, P., Muller, A. F., and Jard, S., Vasopressin and angiotensin induce inositol lipid breakdown in rat adenohypophysial cells in primary culture. Reg. Pept.18 (1987) 119–129.CrossRefGoogle Scholar
  72. 72.
    Hashimoto, K., Ohno, N., Aoki, Y., Kageyama, J., Takahara, J., and Ofuji, T., Distribution and characterization of corticotropin-releasing factor and arginine vasopressin in rat hypothalamic nuclei. Neuroendocrinology34 (1982) 32–37.PubMedGoogle Scholar
  73. 73.
    Hedge, G. A., Roles for the prostaglandins in the regulation of anterior pituitary secretion. Life Sci.20 (1977) 17–33.CrossRefPubMedGoogle Scholar
  74. 74.
    Herbert, E., Budarf, M., Phillips, M., Rosa, P., Policastro, P., Oates, E., Roberts, J. L., Seidah, N. G., and Chretien, M., Presence of a pre-sequence (signal sequence) in the common precursor to ACTH and endorphin and the role of glycosylation in processing of the precursor and secretion of ACTH and endorphin. Ann. N.Y. Acad. Sci.343 (1980) 79–93.PubMedGoogle Scholar
  75. 75.
    Hinman, M. B., and Herbert, E., Processing of the precursor to adrenocorticotropic hormone and β-lipotropin in monolayer cultures of mouse anterior pituitary. Biochemistry19 (1980) 5395–5402.CrossRefPubMedGoogle Scholar
  76. 76.
    Hosey, M. M., and Lazdunski, M., Calcium channels: molecular pharmacology, structure and regulation. J. Membrane Biol.104 (1988) 81–105.CrossRefGoogle Scholar
  77. 77.
    Imura, H., Control of biosynthesis and secretion of ACTH: a review. Horm. Metab. Res. [Suppl.]16 (1987) 1–6.Google Scholar
  78. 78.
    Jezova, D., Kvetnansky, R., Kovacs, K., Oprsalova, Z., Vigas, M., and Makara, G. B., Insulin-induced hypoglycemia activates the release of adrenocorticotropin predominantly via central and propranolol insensitive mechanisms. Endocrinology120 (1987) 409–415.PubMedGoogle Scholar
  79. 79.
    Jolicoeur, P., and Labrie, F., Phosphorylation of nuclear proteins from bovine anterior pituitary gland induced by adenosine 3′∶5′-monophosphate. Eur. J. Biochem.48 (1974) 1–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Jones, M. T., and Gillham, B., Factors involved in the regulation of adrenocorticotropic hormone/β-lipotropic hormone. Physiol. Rev.68 (1988) 743–818.PubMedGoogle Scholar
  81. 81.
    Judd, A. M., Jarvis, W. D., and MacLeod, R. M., Attenuation of pituitary polyphosphoinositide metabolism by protein kinase C activation. Molec. cell. Endocr.54 (1987) 107–114.CrossRefPubMedGoogle Scholar
  82. 82.
    Kahn, D., Abrams, G. M., Zimmerman, E. A., Carraway, R., and Leeman, S. E., Neurotensin neurons in the rat hypothalamus: an immunocytochemical study. Endocrinology107 (1930) 47–54.Google Scholar
  83. 83.
    Kaplan, N. M., The adrenal glands, in: Textbook of Endocrine Physiology, pp. 245–272. Eds J. E. Griffin and S. R. Ojeda. Oxford University Press, New York 1988.Google Scholar
  84. 84.
    Keller-Wood, M., and Bell, M. E., Evidence for rapid inhibition of ACTH by corticosteroids in dogs. Am. J. Physiol.255 (1988) R344-R349.PubMedGoogle Scholar
  85. 85.
    Keller-Wood, M. E., and Dallman, M. F., Corticosteroid inhibition of ACTH secretion. Endocr. Rev.5 (1984) 1–24.PubMedGoogle Scholar
  86. 86.
    King, M. S., and Baertschi, A. J., Physiological concentrations of atrial natriuretic factors with intact N-terminal sequences inhibit corticotropin-releasing factor-stimulated adrenocorticotropin secretion from cultured anterior pituitary cells. Endocrinology124 (1989) 286–292.PubMedGoogle Scholar
  87. 87.
    Knepel, W., Gotz, D., and Fahrenholz, F., Interaction of rat adenohypophyseal vasopressin receptors with vasopressin analogues substituted at positions 7 and 1: dissimilarity from the V1 vasopressin receptor. Neuroendocrinology44 (1986) 390–396.PubMedGoogle Scholar
  88. 88.
    Knepel, W., Homolka, L., Vlaskovska, M., and Nutto, D., In vitro adrenocorticotropin/β-endorphin-releasing activity of vasopressin analogs is related neither to pressor nor to antidiuretic activity. Endocrinology114 (1984) 1797–1804.PubMedGoogle Scholar
  89. 89.
    Knepel, W., and Meyen, G., Effect of blockers of arachidonic acid metabolism on release of beta-endorphin and adrenocorticotropin-like immunoreactivity induced by phospholipase A2 from rat adenohypophysis in vitro. Neuroendocrinology43 (1986) 44–48.PubMedGoogle Scholar
  90. 90.
    Koch, B., and Lutz-Butcher, B., Specific receptors for vasopressin in the pituitary gland: evidence for down-regulation and desensitization to adrenocorticotropin-releasing factors. Endocrinology116 (1985) 671–676.PubMedGoogle Scholar
  91. 91.
    Koch, B., and Lutz-Butcher, B., Characterization and modulation of high affinity receptors for CRF in the pituitary gland. Neuroendocr. Lett.5 (1983) 227–232.Google Scholar
  92. 92.
    Kubba, M. A., and McNicol, A. M., Stimulation of pituitary corticotrophs in the rat-ultrastructural studies. Virchows Arch. B54 (1987) 119–126.PubMedGoogle Scholar
  93. 93.
    Labrie, F., Gagne, B., and Lefevre, G., Corticotropin-releasing factor stimulates adenylate cyclase activity in the anterior pituitary gland. Life Sci.31 (1982) 1117–1121.CrossRefPubMedGoogle Scholar
  94. 94.
    Labrie, F., Giguere, V., Proulx, L., and Lefevre, G., Interactions between CRF, epinephrine, vasopressin and glucocorticoids in the control of ACTH secretion. J. Steroid Biochem.20 (1984) 153–160.CrossRefPubMedGoogle Scholar
  95. 95.
    Labrie, F., Veilleux, R., Lefevre, G., Coy, D. H., Sueiras-Diaz, J., and Schally, A. V., Corticotropin-releasing factor stimulates accumulation of adenosine 3′,5′-monophosphate in rat pituitary corticotrophs. Science216 (1982) 1007–1008.PubMedGoogle Scholar
  96. 96.
    Larson, F. L., and Vincenzi, F. F., Calcium transport across the plasma membrane: stimulation by calmodulin. Science204 (1979) 306–309.PubMedGoogle Scholar
  97. 97.
    Leong, D. A., A complex mechanism of facilitation in pituitary ACTH cells: recent single-cell studies. J. exp. Biol.139 (1988) 151–168.PubMedGoogle Scholar
  98. 98.
    Leroux, P., and Pelletier, G., Radioautographic study of binding and internalization of corticotropin-releasing factor by rat anterior pituitary corticotrophs. Endocrinology114 (1984) 14–21.PubMedGoogle Scholar
  99. 99.
    Levitan, I. B., Modulation of ion channels in neurons and other cells. A. Rev. Neurosci.11 (1988) 119–136.CrossRefGoogle Scholar
  100. 100.
    Litosch, I., and Fain, J. N., Regulation of phosphoinositide break-down by guanine nucleotides. Life Sci.39 (1986) 187–194.CrossRefPubMedGoogle Scholar
  101. 101.
    Loeffler, J. P., Kley, N., Pitius, C. W., and Hollt, V., Calcium ion and cyclic adenosine 3′,5′-monophosphate regulate proopiomelanocortin messenger ribonucleic acid levels in rat intermediate and anterior pituitary lobes. Endocrinology119 (1986) 2840–2847.PubMedGoogle Scholar
  102. 102.
    Loeffler, J. P., Kley, N., Pitius, C. W., and Hollt, V., Corticotropin-releasing factor and forskolin increase proopiomelanocortin messenger RNA levels in rat anterior and intermediate cells in vitro. Neurosci. Lett.62 (1985) 383–387.CrossRefPubMedGoogle Scholar
  103. 103.
    Lowry, P. J., Silas, L., Mclean, C., Linton, E. A., and Estivariz, F. E., Pro-γ-melanocyte-stimulating hormone cleavage in adrenal gland undergoing compensatory growth. Nature306 (1983) 70–73.CrossRefPubMedGoogle Scholar
  104. 104.
    Lowry, P. J., Gillies, G., Hope, J., and Jackson, S., Structure and biosynthesis of peptides related to corticotrophin and lipotrophin. Hormone Res.13 (1980) 201–210.Google Scholar
  105. 105.
    Luini, A., Lewis, D., Guild, S., Corda, D., and Axelrod, J., Hormone secretagogues increase cystolic calcium by increasing cAMP in corticotropin-secreting cells. Proc. natl Acad. Sci.82 (1985) 8034–8038.PubMedGoogle Scholar
  106. 106.
    Lundblad, J. R., and Roberts, J. L., Regulation of proopiomelanocortin gene expression in pituitary. Endocr. Rev.9 (1988) 135–158.PubMedGoogle Scholar
  107. 107.
    Mains, R. E., and Eipper, B. A., Synthesis and secretion of ACTH, β-endorphin, and related peptides, in: Neurosecretion and Brain Peptides, pp. 35–47. Eds J. B. Martin, S. Reichlin and K. L. Bick. Raven Press, New York 1981.Google Scholar
  108. 108.
    Marchetti, C., Childs, G. V., and Brown, A. M., Membrane currents of identified isolated rat corticotropes and gonadotropes. Am. J. Physiol.252 (1987) E340-E346.PubMedGoogle Scholar
  109. 109.
    May Jr, W. S., Sahyoun, N., Wolf, M., and Cuatrecasas, P., Role of intracellular calcium mobilization in the regulation of protein kinase C-mediated membrane processes. Nature317 (1985) 549–551.CrossRefPubMedGoogle Scholar
  110. 110.
    McEwen, B. S., DeKloet, E. R., and Rostene, W., Adrenal steroid receptors and action in the nervous system. Physiol. Rev.66 (1986) 1121–1188.PubMedGoogle Scholar
  111. 111.
    Means, A. R., and Dedman, J. R., Calmodulin — an intracellular calcium receptor. Nature285 (1980) 73–77.CrossRefPubMedGoogle Scholar
  112. 112.
    Meyer, T., Holowka, D., and Stryer, L., Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. Science240 (1988) 653–656.PubMedGoogle Scholar
  113. 113.
    Michell, R. H., Inositol phospholipids in membrane function. TIBS4 (1979) 128–131.Google Scholar
  114. 114.
    Milligan, J. V., and Kraicer, J., Physical characteristics of the Ca2+ compartments associated with in vitro ACTH release. Endocrinology94 (1974) 435–443.PubMedGoogle Scholar
  115. 115.
    Moriarty, G. C., and Halmi, N. S., Electron microscopic study of the adrenocorticotropin-producing cell with the use of unlabeled antibody and the soluble peroxidase-antiperoxidase complex. J. Histochem. Cytochem.20 (1972) 590–603.PubMedGoogle Scholar
  116. 116.
    Mulder, G. H., and Smelik, P. G., A superfusion system technique for the study of the sites of action of glucocorticoids in the rat hypothalamus-pituitary-adrenal system in vitro. I. Pituitary cell superfusion. Endocrinology100 (1977) 1143–1152.Google Scholar
  117. 117.
    Munck, A., Guyre, P. M., and Holbrook, N. J., Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev.5 (1984) 25–44.PubMedGoogle Scholar
  118. 118.
    Murakami, K., Hashimoto, K., and Ota, Z., Calmodulin inhibitors decrease CRF- and AVP-induced ACTH release in vitro: interaction of calcium-calmodulin and the cyclic AMP system. Neuroendocrinology41 (1985) 7–12.PubMedGoogle Scholar
  119. 119.
    Murakami, K., Hashimoto, K., and Ota, Z., The effect of nifedipine on CRF-41 and AVP-induced ACTH release in vitro. Acta endocr.109 (1985) 32–36.PubMedGoogle Scholar
  120. 120.
    Nakane, P. K., Classifications of anterior pituitary cell types with immunoennzyme histochemistry. H. Histochem. Cytochem.18 (1970) 9–20.Google Scholar
  121. 121.
    Nakane, P. K., Setalo, G., and Mazurkiewicz, J. E., The origin of ACTH cells in rat anterior pituitary. Ann. N.Y. Acad. Sci.297 (1977) 201–204.PubMedGoogle Scholar
  122. 122.
    Nakanishi, S., Teranishi, Y., Watanabe, Y., Notake, M., Noda, M., Kakidani, H., Jingami, H., and Numa, S., Isolation and characterization of the bovine corticotropin/β-lipotropin precursor gene. Eur. J. Biochem.115 (1981) 429–438.PubMedGoogle Scholar
  123. 123.
    Nestler, E. J., and Greengard, P., Protein phosphorylation in the brain. Nature305 (1983) 583–588.CrossRefPubMedGoogle Scholar
  124. 124.
    Niimi, M., Takahara, J., Hashimoto, K., and Kawanishi, K., Immunohistochemical identification of corticotropin releasing factor-containing neurons projecting to the stalk-median eminence of the rat. Peptides9 (1988) 589–593.CrossRefPubMedGoogle Scholar
  125. 125.
    Nishizuka, Y., The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature308 (1984) 693–698.CrossRefGoogle Scholar
  126. 126.
    Notake, M., Tobimatsu, T., Watanabe, Y., Takahashi, H., Mishina, M., and Numa, S., Isolation and characterization of the mouse corticotropin-β-lipotropin precursor gene and a related pseudogene. FEBS Lett.156 (1983) 67–71.CrossRefPubMedGoogle Scholar
  127. 127.
    Nowycky, M. C., Fox, A. P., and Tsien, R. W., Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature316 (1985) 440–443.PubMedGoogle Scholar
  128. 128.
    Okajima, T., and Hertting, G., Delta-sleep-inducing peptide (DSIP) inhibited CRF-induced ACTH secretion from rat anterior pituitary gland in vitro. Horm. Metab. Res.18 (1986) 497–498.PubMedGoogle Scholar
  129. 129.
    Oliver, C., Mical, R. S., and Porter, J. C., Hypothalamic-pituitary vasculature: evidence for retrograde blood flow in the pituitary stalk. Endocrinology101 (1977) 598–604.PubMedGoogle Scholar
  130. 130.
    Olschowka, J. A., O'Donohue, T. L., Mueller, G. P., and Jacobowitz, D. M., The distribution of corticotropin releasing factor-like immunoreactive neurons in rat brain. Peptides3 (1982) 995–1015.CrossRefPubMedGoogle Scholar
  131. 131.
    Osbourne, N. N., Tobin, A. B., and Ghazi, H., Role of inositol trisphosphate as a second messenger in signal transduction processes: an essay. Neurochem. Res.13 (1988) 177–191.CrossRefPubMedGoogle Scholar
  132. 132.
    Paglin, S., Stukenbrok, H., and Jamieson, J. D., Interaction of angiotensin II with dispersed cells from the anterior pituitary of the maie rat. Endocrinology114 (1984) 2284–2292.PubMedGoogle Scholar
  133. 133.
    Palade, G., Intracellular aspects of the process of protein synthesis. Science189 (1975) 347–358.PubMedGoogle Scholar
  134. 134.
    Perrin, M. H., Haas, Y., Rivier, J., and Vale, W. W., Corticotropin-releasing factor binding to the anterior pituitary receptor is modulated by divalent cations and guanyl nucleotides. Endocrinology118 (1986) 1171–1179.PubMedGoogle Scholar
  135. 135.
    Plotsky, P. M., Bruhn, T. O., and Vale, W., Hypophysiotropic regulation of adrenocorticotropin secretion in response to insulin-induced hypoglycemia. Endocrinology117 (1985) 323–329.PubMedGoogle Scholar
  136. 136.
    Putney Jr, J. W., The role of phosphoinositide metabolism in signal transduction in secretory cells. J. exp. Biol.139 (1988) 135–150.PubMedGoogle Scholar
  137. 137.
    Rasmussen, H., and Barrett, P. Q., Calcium messenger system: an integrated review. Physiol. Rev.64 (1984) 938–984.PubMedGoogle Scholar
  138. 138.
    Raymond, V., Leung, P. C. K., Veilleux, R., and Labrie, F., Vasopressin rapidly stimulates phosphatidic acid-phosphatidylinositol turnover in rat anterior pituitary cells. FEBS Lett.182 (1985) 196–200.CrossRefPubMedGoogle Scholar
  139. 139.
    Reisine, T., Neurohumoral aspects of ACTH release. Hosp. Pract.23 (1988) 77–96.Google Scholar
  140. 140.
    Reisine, T., Regulation of adrenocorticotropin release from the anterior pituitary. Psychopharmac. Bull.21 (1985) 438–442.Google Scholar
  141. 141.
    Reisine, T., Rougon, G., and Barbet, J., Liposome delivery of cyclic AMP-dependent protein kinase inhibitor into intact cells: specific blockade of cyclic AMP-mediated adrenocorticotropin release from mouse anterior pituitary tumor cells. J. Cell Biol.102 (1986) 1630–1637.CrossRefPubMedGoogle Scholar
  142. 142.
    Reisine, T., Rougon, G., Barbet, J., and Affolter, H.-U., Corticotropin-releasing factor-induced adrenocorticotropin hormone release and synthesis is blocked by incorporation of the inhibitor of cyclic AMP-dependent protein kinase into anterior pituitary tumor cells by liposomes. Proc. natl Acad. Sci. USA82 (1985) 8261–8265.PubMedGoogle Scholar
  143. 143.
    Reisine, T., Zhang, Y.-L., and Sekura, R. D., Pertussis toxin blocks the inhibition of somatostatin and increases the stimulation by forskolin of cyclic AMP accumulation and adrenocorticotropin secretion from mouse anterior pituitary tumor cells. J. Pharmac. exp. Ther.232 (1985) 275–282.Google Scholar
  144. 144.
    Reuter, H., Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature301 (1983) 569–573.CrossRefPubMedGoogle Scholar
  145. 145.
    Rhodes, C. H., Morrell, J. I., and Pfaff, D. W., Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin. J. comp. Neur.198 (1981) 45–64.CrossRefPubMedGoogle Scholar
  146. 146.
    Richardson, U. I., and Schobbrunn, A., Inhibition of adrenocorticotropin secretion by somatostatin in pituitary cells in culture. Endocrinology108 (1981) 281–290.PubMedGoogle Scholar
  147. 147.
    Rivier, C., Rivier, J., and Vale, W., Inhibition of adrenocorticotropic hormone secretion in the rat by immunoneutralization of corticotropin-releasing factor. Science218 (1982) 377–378.PubMedGoogle Scholar
  148. 148.
    Rivier, C., and Vale, W., Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature,305 (1983) 325–327.CrossRefPubMedGoogle Scholar
  149. 149.
    Rivier, C. L., and Plotsky, P. M., Mediation by corticotropin releasing factor (CRF) of adenohypophysial hormone secretion. A. Rev. Physiol.48 (1986) 475–494.CrossRefGoogle Scholar
  150. 150.
    Roberts, J. L., and Herbert, E., Characterization of a common precursor to corticotropin and β-lipotropin: cell-free synthesis of the precursor and identification of corticotropin peptide in the molecule. Proc. natl Acad. Sci.74 (1977) 4826–4830.PubMedGoogle Scholar
  151. 151.
    Roberts, J. L., Phillips, M., Rosa, P. A., and Herbert, E., Steps involved in the processing of common precursor forms of adrenocorticotropin and endorphin in cultures of mouse pituitary cells. Biochemistry17 (1978) 3609–3618.PubMedGoogle Scholar
  152. 152.
    Rodbell, M., The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature284 (1980) 17–22.CrossRefPubMedGoogle Scholar
  153. 153.
    Rougon, G., Barbet, J., and Reisine, T., Protein phosphorylation induced by phorbol esters and cyclic AMP in anterior pituitary cells: possible role in adrenocorticotropin release and synthesis. J. Neurochem.52 (1989) 1270–1278.PubMedGoogle Scholar
  154. 154.
    Sawchenko, P. E., Adrenalectomy-induced enhancement of CRF and vasopressin immunoreactivity in parvocellular neurosecretory neurons: anatomic, peptide, and steroid specificity. J. Neurosci.7 (1987) 1093–1096.PubMedGoogle Scholar
  155. 155.
    Sawchenko, P. E., Swanson, L. W., and Vale, W. W., Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc. natl Acad. Sci.81 (1984) 1883–1887.PubMedGoogle Scholar
  156. 156.
    Sawchenko, P. E., Swanson, L. W., and Vale, W. W., Corticotropin-releasing factor: co-expression within distinct subsets of oxytocin-, vasopressin-, and neurotensin-immunoreactive neurons in the hypothalamus of the male rat. J. Neurosci.4 (1984) 1118–1129.PubMedGoogle Scholar
  157. 157.
    Sayers, G., Hanzman, E., and Bodanszky, M., Hypothalamic peptides influencing secretion of ACTH by isolated adenohypophysial cells. FEBS Lett.116 (1980) 236–238.CrossRefPubMedGoogle Scholar
  158. 158.
    Sayers, G., and Portanova, R., Secretion of ACTH by isolated anterior pituitary cells: kinetics of stimulation by corticotropin-releasing factor and of inhibition by corticosterone. Endocrinology94 (1974) 1723–1730.PubMedGoogle Scholar
  159. 159.
    Schoenenberg, P., Kehrer, P., Muller, A. F., and Gaillard, R. C., Angiotensin II potentiates corticotropin-releasing activity of CRF41 in rat anterior pituitary cells: mechanism of action. Neuroendocrinology45 (1987) 86–90.PubMedGoogle Scholar
  160. 160.
    Siperstein, E. R., and Miller, K. J., Further cytophysiologic evidence for the identity of the cells that produce adrenocorticotrophic hormone. Endocrinology86 (1970) 451–486.PubMedGoogle Scholar
  161. 161.
    Siperstein, E. R., and Miller, K. J., Hypertrophy of the ACTH-producing cell following adrenalectomy: a quantitative electron microscopic study. Endocrinology93 (1973) 1257–1268.PubMedGoogle Scholar
  162. 162.
    Sobel, D. O., Characterization of 12-O-tetradecanoyl-phorbol-13 acetate mediated ACTH release. Endocr. Res.14 (1988) 149–163.PubMedGoogle Scholar
  163. 163.
    Sobel, D. O., Characterization of PGE2 inhibition of corticotropin releasing factor-mediated ACTH release. Brain Res.411 (1987) 102–107.CrossRefPubMedGoogle Scholar
  164. 164.
    Sobel, D. O., Role of cyclic AMP in corticotropin releasing factor mediated ACTH release. Peptides6 (1985) 591–595.CrossRefPubMedGoogle Scholar
  165. 165.
    Sobel, D. O., The role of calcium in the mechanism of corticotropin releasing factor mediated ACTH release. Peptides7 (1986) 443–448.CrossRefPubMedGoogle Scholar
  166. 166.
    Spinedi, E., and Negro-Vilar, A., Arginine vasopressin and adrenocorticotropin release: correlation between binding characteristics and biological activity in anterior pituitary dispersed cells. Endocrinology114 (1984) 2247–2251.PubMedGoogle Scholar
  167. 167.
    Stillman, M. A., Recht, L. D., Rosario, S. L., Seif, S. M., Robinson, A. G., and Zimmerman, E. A., The effects of adrenalectomy and glucocorticoid replacement on vasopressin and vasopressin-neurophysin in the zona externa of the median eminence of the rat. Endocrinology101 (1977) 42–49.PubMedGoogle Scholar
  168. 168.
    Streb, H., Irvine, R. F., Berridge, M. J., and Shulz, I., Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature306 (1983) 67–68.PubMedGoogle Scholar
  169. 169.
    Suda, T., Tozawa, F., Yamada, M., Ushiyama, T., Tomori, N., Sumitomo, T., Nakagami, Y., and Shizume, K., In vitro study on proopiomelanocortin messenger RNA levels in cultured rat anterior pituitary cells. Life Sci.42 (1988) 1147–1152.CrossRefPubMedGoogle Scholar
  170. 170.
    Sutherland, E. W., and Rall, T. W., Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J. biol. Chem.232 (1958) 1077–1091.PubMedGoogle Scholar
  171. 171.
    Sutherland, E. W., Rall, T. W., and Menon, T., Adenyl cyclase: I. Distribution, preparation and properties. J. biol. Chem.237 (1962) 1220–1227.PubMedGoogle Scholar
  172. 172.
    Sutko, J. L., Ito, K., and Kenyon, J. L., Ryanodine: a modifier of sarcoplasmic reticulum calcium release in striated muscle. Fedn. Proc.44 (1985) 2984–2988.Google Scholar
  173. 173.
    Swanson, L. W., Sawchenko, P. E., and Vale, W. W., Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology36 (1983) 165–186.PubMedGoogle Scholar
  174. 174.
    Syndor, K. L., and Sayers, G., Blood and pituitary ACTH in intact and adrenalectomized rats after stress. Endocrinology55 (1954) 621–636.PubMedGoogle Scholar
  175. 175.
    Takahashi, H., Hakamata, Y., Watanabe, Y., Kikuno, R., Miyata, T., and Numa, S., Complete nucleotide sequence of the human corticotropin-β-lipotropin precursor gene. Nucleic Acids Res.11 (1983) 6847–6858.PubMedGoogle Scholar
  176. 176.
    Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y., Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J. biol. Chem.254 (1979) 3692–3695.PubMedGoogle Scholar
  177. 177.
    Teo, T. S., and Wang, J. H., Mechanisms of activation of a cyclic adenosine 3′∶5′-monophosphate phosphodiesterase from bovine heart by calcium ions. J. biol. Chem.248 (1973) 5950–5955.PubMedGoogle Scholar
  178. 178.
    Tilders, F. J. H., Berkenbosch, F., Vermes, I., Linton, E. A., and Smelick, P. G., Role of epinephrine and vasopressin in the control of the pituitary-adrenal response to stress. Fedn Proc.44 (1985) 155–160.Google Scholar
  179. 179.
    Todd, K., and Lightman, S. L., Vasopressin activation of phosphatidylinositol metabolism in rat anterior pituitary in vitro and its modification by changes in the hypothalamo-pituitary-adrenal axis. Neuroendocrinology45 (1987) 212–218.PubMedGoogle Scholar
  180. 180.
    Tsunoo, A., Yoshii, M., and Narahashi, T., Differential block of two types of calcium channels in neuroblastoma cells. Biophys. J.47 (1985) 433a.Google Scholar
  181. 181.
    Uhler, M., and Herbert, E., Complete amino acid sequence of mouse pro-opiomelanocortin derived from the nucleotide sequence of pro-opiomelanocortin cDNA. J. biol. Chem.258 (1983) 257–261.PubMedGoogle Scholar
  182. 182.
    Vale, W., and Rivier, C., Substances modulating the secretion of ACTH by cultured anterior pituitary cells. Fedn Proc.36 (1977) 2094–2099.Google Scholar
  183. 183.
    Vale, W., Rivier, C., Yang, L., Minick, S., and Guillemin, R., Effects of purified hypothalamic corticotropin-releasing factor and other substances on the secretion of adrenocorticotropin and β-endorphin-like immunoreactivities in vitro. Endocrinology103 (1978) 1910–1915.PubMedGoogle Scholar
  184. 184.
    Vale, W., Spiess, J., Rivier, C., and Rivier, J., Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science213 (1981) 1394–1397.PubMedGoogle Scholar
  185. 185.
    Vale, W., Vaughan, J., Smith, M., Yamamoto, G., Rivier, J., and Rivier, C., Effects of synthetic ovine corticotropin-releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides, and other substances on cultured corticotropic cells. Endocrinology113 (1983) 1121–1130.PubMedGoogle Scholar
  186. 186.
    Vandesande, F., De Mey, J., and Dierickx, K., Identification of neurophysin producing cells. I. The origin of the neurophysin-like substance-containing nerve fibers of the external region of the median eminence of the rat. Cell Tiss. Res.151 (1974) 187–200.CrossRefGoogle Scholar
  187. 187.
    Vandersande, F., Dierickx, K., and De Mey, J., The origin of vasopressinergic and oxytocinergic fibers of the external region of the median eminence of the rat hypophysis. Cell Tiss. Res.180 (1977) 443–452.Google Scholar
  188. 188.
    Vlaskovska, M., and Knepel, W., Beta-endorphin and adrenocorticotropin release from rat adenohypophysis in vitro: evidence for local modulation by aracidonic acid metabolites of the cyclooxygenase and lipoxygenase pathway. Neuroendocrinology39 (1984) 334–342.PubMedGoogle Scholar
  189. 189.
    Wand, G. S., and Eipper, B. A., Effect of chronic secretagogue exposure on pro-adrenocorticotropin/endorphin production and secretion in primary cultures of rat anterior pituitary. Endocrinology120 (1987) 953–961.PubMedGoogle Scholar
  190. 190.
    Wand, G. S., May, V., and Eipper, B. A., Comparison of acute and chronic secretagogue regulation of proadrenocorticotropin/endorphin synthesis, secretion, and messenger ribonucleic acid production in primary cultures of rat anterior pituitary. Endocrinology123 (1988) 1153–1161.PubMedGoogle Scholar
  191. 191.
    Wang, J. H., and Waisman, D. M., Calmodulin and its role in the second-messenger system. Cur. Topics cell. Regul.15 (1979) 47–107.Google Scholar
  192. 192.
    Watanabe, T., and Orth, D. N., Detailed kinetic analysis of adrenocorticotropin secretion by dispersed rat anterior pituitary cells in a microperifusion system: effects of corticotropin-releasing factor and arginine vasopressin. Endocrinology121 (1987) 1133–1145.PubMedGoogle Scholar
  193. 193.
    Westendorf, J. M., and Schonbrunn, A., Peptide specificity for stimulation of corticotropin secretion: activation of overlapping pathways by the vasoactive intestinal peptide family and corticotropin-releasing factor. Endocrinology116 (1985) 2528–2535.PubMedGoogle Scholar
  194. 194.
    Westlund, K. N., Aguilera, G., and Childs, G. V., Quantification of morphological changes in pituitary corticotropes produced by in vitro corticotropin-releasing factor stimulation and adrenalectomy. Endocrinology116 (1985) 439–445.PubMedGoogle Scholar
  195. 195.
    Westlund, K. N., Wynn, P. C., Chmielowiec, S., Collins, T. J., and Childs, G. V., Characterization of a potent biotinconjugated CRF analog and the responses of anterior pituitary corticotropes. Peptides5 (1984) 627–634.CrossRefPubMedGoogle Scholar
  196. 196.
    Whitnall, M. H., and Gainer, H., Major pro-vasopressin-expressing and pro-vasopressin-deficient subpopulations of corticotropin-releasing hormone neurons in normal rats. Neuroendocrinology47 (1988) 176–180.PubMedGoogle Scholar
  197. 197.
    Whitnall, M. H., Mezey, E., and Gainer, H., Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature317 (1985) 248–250.CrossRefPubMedGoogle Scholar
  198. 198.
    Whitnall, M. H., Smyth, D., and Gainer, H., Vasopressin coexists in half of the corticotropin-releasing factor axons in the external zone of the median eminence in normal rats. Neuroendocrinology45 (1987) 420–424.PubMedGoogle Scholar
  199. 199.
    Widmaier, E. P., and Dallman, M. F., The effects of corticotropin-releasing factor on adrenocorticotropin secretion from perifused pituitaries in vitro: rapid inhibition by glucocorticoids. Endocrinology115 (1984) 2368–2374.PubMedGoogle Scholar
  200. 200.
    Widmaier, E. P., Lim, A. T., and Vale, W., Secretion of corticotropin-releasing factor from cultured rat hypothalamic cells: effects of catecholamines. Endocrinology124 (1989) 583–590.PubMedGoogle Scholar
  201. 201.
    Wise, B. C., Glass, D. B., Chou, C.-H. J., Raynor, R. L., Katoh, N., Schatzman, R. C., Turner, R. S., Kibler, R. F., and Kuo, J. F., Phospholipid-sensitive Ca2+-dependent protein kinase from heart. II. substrate specificity and inhibition by various agents. J. biol. Chem.257 (1982) 8489–8495.PubMedGoogle Scholar
  202. 202.
    Wolfe, L. S., Eicosanoids: prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-20 unsaturated fatty acids. J. Neurochem.38 (1982) 1–14.PubMedGoogle Scholar
  203. 203.
    Worley, P. F., Baraban, J. M., and Snyder, S. H., Beyond receptors: multiple second-messenger systems in brain. Ann. Neurol.21 (1987) 217–229.CrossRefPubMedGoogle Scholar
  204. 204.
    Wynn, P. C., Aguilera, G., Morell, J., and Catt, K. J., Properties and regulation of high affinity pituitary receptors for corticotropin-releasing factor. Biochem. biophys. Res. Commun.110 (1983) 602–608.CrossRefPubMedGoogle Scholar
  205. 205.
    Zimmerman, E. A., Stillman, M. A., Recht, L. D., Antunes, J. L., and Carmel, P. W., Vasopressin and corticotropin-releasing factor: an axonal pathway to portal capillaries in the zona externa of the median eminence containing vasopressin and its interaction with adrenal corticoids. Ann. N.Y. Acad. Sci.297 (1977) 405–419.PubMedGoogle Scholar
  206. 206.
    Zimmerman, G., and Fleischer, N., Role of calcium ions in the release of ACTH from rat pituitary tissue in vitro. Endocrinology87 (1970) 426–429.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • M. S. King
    • 1
  • B. J. Baertschi
    • 1
  1. 1.Department of Physiology, Neuroscience Program and Cancer CenterUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations