, Volume 38, Issue 9, pp 1001–1006 | Cite as

Cellular basis of the photoresponse of an extraretinal photoreceptor

  • Michael C. Andresen
  • Arthur M. Brown
Generalia The Comparative Physiology of Extraocular Photoreception


Cellular Basis Extraretinal Photoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Menaker, Nonvisual light reception. Scient Am.226, 22–29 (1972).Google Scholar
  2. 2.
    M. Menaker, Introduction: Symposium on extraretinal photoreception in circadian rhythms and related phenomena. Photochem. Photobiol.23, 213 (1976).Google Scholar
  3. 3.
    N. Millott, The dermal light sense. Symp. Zool. Soc. Lond.23, 1–36 (1968).Google Scholar
  4. 4.
    D.M. Steven, The dermal light sense. Biol. Rev.38, 204–240 (1963).CrossRefPubMedGoogle Scholar
  5. 5.
    W.A. Hagins and S. Yoshikami, A role for Ca2+ in excitation of retinal rods and cones. Exp. Eye Res.18, 299–305 (1974).CrossRefPubMedGoogle Scholar
  6. 6.
    W.L. Hubbell and M.D. Bownds, Visual transduction in vertebrate photoreceptors. A. Rev. Neurosci.2, 17–34 (1979).CrossRefGoogle Scholar
  7. 7.
    P.A. Leibman and E.N. Pugh, Jr, The control of phospodiesterase in rod disk membranes: Kinetics, possible mechanisms and significance for vision. Vis. Res.19, 375–380 (1979).CrossRefPubMedGoogle Scholar
  8. 8.
    M.C. Andresen and A.M. Brown, Photoresponses of a sensitive extraretinal photoreceptor inAplysia. J. Physiol., Lond.287, 267–282 (1979).Google Scholar
  9. 9.
    A. Arvanitaki and N. Chalazonitis, Excitatory and inhibitory processes initiated by light and infra-red radiations in single identifiable nerve cells (giant ganglion cells ofAplysia), in: Nervous Inhibition, pp. 194–231. Ed. E. Florey. Pergamon, Oxford 1961.Google Scholar
  10. 10.
    W.T. Frazier, E.R. Kandel, I. Kupfermann, R. Waziri and R.E. Coggeshall, Morphological and functional properties of identified neurons in the abdominal ganglion ofAplysia californica. J. Neurophysiol30, 1288–1351 (1967).Google Scholar
  11. 11.
    J.M. Krauhs, M.C. Andresen, P.S. Baur and A.M. Brown, Ultrastructure ofAplysia neurons having different degrees of light sensitivity. J. Neurobiol.10, 455–464 (1979).CrossRefPubMedGoogle Scholar
  12. 12.
    A.M. Brown and H.M. Brown, Light response of a giantAplysia neuron. J. gen. Physiol.62, 239–254 (1973).PubMedGoogle Scholar
  13. 13.
    J.J. Wolken, Invertebrate Photoreceptors. Academic Press, New York 1971.Google Scholar
  14. 14.
    A.M. Brown, M.S. Brodwick and D.C. Eaton, Intracellular calcium and extraretinal photoreception inAplysia giant neurons. J. Neurobiol.8, 1–18 (1977).CrossRefPubMedGoogle Scholar
  15. 15.
    A.M. Brown and D.L. Kunze, Ionic activity in identifiableAplysia neurons, in: Ion Selective Microelectrodes, pp. 57–73. Ed. H.J. Berman and N.C. Hebert. Plenum, New York 1971.Google Scholar
  16. 16.
    J.M. Russell and A.M. Brown, Active transport of potassium by the giant neuron of theAplysia abdominal ganglion. J. gen. Physiol.60, 519–533 (1972).CrossRefPubMedGoogle Scholar
  17. 17.
    D.C. Eaton, Potassium ion accumulaton near a pacemaking cell ofAplysia. J. Physiol.224, 421–440 (1972).PubMedGoogle Scholar
  18. 18.
    M.F. Marmor, The effects of temperature and ions on the current-voltage relation and electrical characteristics of molluscan neurone. J. Physiol.218, 573–598 (1971).PubMedGoogle Scholar
  19. 19.
    R.W. Meech, Intracellular calcium injection causes increased potassium conductance inAplysia nerve cells. Comp. Biochem. Physiol.42A, 493–499 (1972).CrossRefGoogle Scholar
  20. 20.
    P.S. Baur, Jr, A.M. Brown, T.D. Rogers and M.E. Brower, Lipochondria and the light response ofAplysia giant neurons. J. Neurobiol.8, 19–42 (1977).CrossRefPubMedGoogle Scholar
  21. 21.
    L.A. Sordahl, A. Lewis, J. Pancurak, A.M. Brown and G. Perrault, Identification of the photosensitive pigment in the giant neuron ofAplysia californica. Biophys. J.16, 146A (1976).Google Scholar
  22. 22.
    J.M. Krauhs, L.A. Sordahl and A.M. Brown, Isolation of pigmented granules involved in extraretinal photoreception inAplysia californica neurons. Biochim. biophys. Acta471, 25–31 (1977a).PubMedGoogle Scholar
  23. 23.
    J.M. Krauhs, L.A. Sordahl and A.M. Brown, Identification of a vitamin A compound in extracts on pigmented granules fromAplysia neurons. Biophys. J.17, 16a (1977b).Google Scholar
  24. 24.
    M. Henkart, Light-induced changes in the structure of pigmented granules inAplysia neurons. Science188, 155–157 (1975).PubMedGoogle Scholar
  25. 25.
    A.M. Brown, P.S. Baur, Jr. and F.H. Tuley, Jr. Phototransduction inAplysia neurons: primary event is calcium release from pigmented granules. Science188, 157–160 (1975).PubMedGoogle Scholar
  26. 26.
    P.M. Waser, The spectral sensitivity of the eye ofAplysia californica. Comp. Biochem. Physiol.27, 339–347 (1968).CrossRefGoogle Scholar
  27. 27.
    G. Wald, P.K. Brown and I.R. Gibbons, The problem of visual excitation. J. opt. Soc. Am.53, 20–35 (1963).PubMedGoogle Scholar
  28. 28.
    J.S. McReynolds and A.L.F. Gorman, Photoreceptor potentials of opposite polarity in the eye of the scallop,Pecten irradians. J. gen. Physiol.56, 376–391 (1970).CrossRefPubMedGoogle Scholar
  29. 29.
    J.S. McReynolds and A.L.F. Gorman, Hyperpolarizing photoreceptors in the eye of a primitive chordate,Salpa democratica. Vision Res.15, 1181–1186 (1975).CrossRefPubMedGoogle Scholar
  30. 30.
    E. Dodt and E. Heerd, Mode of action of pineal nerve fibers in frogs. J. Neurophysiol.25, 405–429 (1962).PubMedGoogle Scholar
  31. 31.
    D. Kennedy, Neural photoreception in a lamellibranch mollusc. J. gen. Physiol.44, 277–299 (1960).CrossRefPubMedGoogle Scholar
  32. 32.
    A.L.F. Gorman and M.V. Thomas, Potassium conductance and internal calcium accumulation in a molluscan neurone. J. Physiol.308, 287–313 (1980).PubMedGoogle Scholar
  33. 33.
    H.D. Lux and J. Meyer, Calcium-activated single channel outward currents inHelix. Pflügers Arch., suppl.,389, R22 (1981).CrossRefGoogle Scholar
  34. 34.
    M.C. Andresen, A.M. Brown and S. Yasui, The role of diffusion in the photoresponse of an extraretinal photoreceptor ofAplysia. J. Physiol.287, 283–301 (1979).PubMedGoogle Scholar
  35. 35.
    D.A. Baylor and A.L. Hodgkin, Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol.234, 163–198 (1973).PubMedGoogle Scholar
  36. 36.
    M.G.F. Fuortes and A.L. Hodgkin, Changes in time scale and sensitivity in ommatidium ofLimulus. J. Physiol.172, 239–263 (1964).PubMedGoogle Scholar
  37. 37.
    M.C. Andresen, Action spectrum for the photoresponse of the L10 identified neuron ofAplysia californica. Master's Thesis, California State University, San Diego 1973.Google Scholar
  38. 38.
    J.P. McMillan, H.A. Underwood, J.A. Elliot, M.H. Stetson and M. Menaker, Extraretinal light perception in the sparrow. IV. Further evidence that the eyes do not participate in photoperiodic photoreception. J. comp. Physiol.97, 205–213 (1975).CrossRefGoogle Scholar
  39. 39.
    M. Tabata, T. Tamura and H. Niwa, Origin of the slow potential in the pineal organ of the rainbow trout. Vision Res.15, 737–740 (1975).CrossRefPubMedGoogle Scholar
  40. 40.
    J.L. Larimer, The effects of temperature on the activity of the caudal photoreceptor. Comp. Biochem. Physiol.22, 683–700 (1967).CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1982

Authors and Affiliations

  • Michael C. Andresen
    • 1
  • Arthur M. Brown
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations