Acta Mathematica Hungarica

, Volume 45, Issue 1–2, pp 151–158 | Cite as

Conditions for inclusion between Nörlund summability methods

  • D. Borwein
  • B. Thorpe


Summability Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. F. Andersen, Comparison theorems in the theory of Cesàro summability,Proc. Lond. Math. Soc.,27 (1928), 39–71.Google Scholar
  2. [2]
    G. H. Hardy,Divergent Series (Oxford, 1949).Google Scholar
  3. [3]
    G. H. Hardy and J. E. Littlewood, Solution of the Cesàro summability problem for power series and Fourier series,Math. Zeit.,19 (1924), 67–96.Google Scholar
  4. [4]
    J. D. Hill, On perfect methods of summability,Duke Math. J.,3 (1937), 702–714.Google Scholar
  5. [5]
    E. Kogbetliantz, Sommation des séries et integrales divergentes par les moyennes arithmétiques et typiques,Mémorial des sciences mathématiques, No. 51 (Paris, 1931).Google Scholar
  6. [6]
    J. E. Littlewood,Lectures on the Theory of Functions (Oxford, 1943).Google Scholar
  7. [7]
    W. Miesner, The convergence fields of Nörlund means,Proc. Lond. Math. Soc.,15 (1965), 495–507.Google Scholar
  8. [8]
    G. Petersen, A note on divergent series,Canad. J. Math. 4 (1952), 445–454.Google Scholar
  9. [9]
    A. Peyerimhoff,Lectures on Summability, Springer Lecture Notes, No. 107 (Berlin).Google Scholar
  10. [10]
    G. Szegö,Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publication, Vol. 23 (New York, 1939).Google Scholar
  11. [11]
    C. E. Winn, On strong summability for any positive order,Math. Zeit.,37 (1933), 481–492.Google Scholar
  12. [12]
    A. Zygmund,Trigonometric Series (Cambridge, 1959).Google Scholar

Copyright information

© Akadémiai Kiadó 1985

Authors and Affiliations

  • D. Borwein
    • 1
  • B. Thorpe
    • 1
  1. 1.The University of Western OntarioLondonCanada

Personalised recommendations