Advertisement

Acta Mathematica Hungarica

, Volume 45, Issue 1–2, pp 21–26 | Cite as

Regularity properties of exponential polynomials on groups

  • L. Székelyhidi
Article

Keywords

Regularity Property Exponential Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aczél, J.,Lectures on Functional Equations and Their Applications, Academic Press, (New York and London, 1966).Google Scholar
  2. [2]
    P. M. Anselone, J. Korevaar, Translation invariant subspaces of finite dimension,Proc. Amer. Math. Soc.,15 (1964), 747–752.Google Scholar
  3. [3]
    F. W. Carroll, A difference property for polynomials and exponential polynomials on abelian locally compact groups,Trans. Amer. Math. Soc.,114 (1965), 147–155.Google Scholar
  4. [4]
    M. Engert, Finite dimensional translation invariant subspaces,Pacific J. Math.,32 (1970), 333–343.Google Scholar
  5. [5]
    P. G. Laird, On characterization of exponential polynomials,Pacific J. Math.,80 (1979), 503–507.Google Scholar
  6. [6]
    M. A. McKiernan, General solution of quadratic functional equations,Aequationes Math, (1970).Google Scholar
  7. [7]
    M. A. McKiernan, Measurable solutions of quadratic functional equations,Colloq. Math.,35 (1976), 97.Google Scholar
  8. [8]
    R. C. Penney, A. L. Rukhin, D'Alembert's functional equation on groups,Proc. Amer. Math. Soc.,77 (1979), 73–80.Google Scholar
  9. [9]
    A. L. Rukhin, The solution of functional equations of d'Alembert's type for commutative groups, Mimeograph Series 79-23, Dept. of Statistics, Purdue University, 1979.Google Scholar
  10. [10]
    L. Székelyhidi, Functional equations on Abelian groups,Acta Math. Acad. Sci. Hungar.,37 (1981), 235–243.Google Scholar
  11. [11]
    L. Székelyhidi, On the zeros of exponential polynomials,C. R. Math. Rep. Acad. Sci. Canada, Vol.IV (1982), 189–194.Google Scholar
  12. [12]
    L. Székelyhidi, Notes on exponential polynomials,Pacific J. Math.,103 (1982), 583–587.Google Scholar
  13. [13]
    L. Székelyhidi, Regularity properties of polynomials on groups,Acta Math. Hung.,45 (1985), 15–19.Google Scholar

Copyright information

© Akadémiai Kiadó 1985

Authors and Affiliations

  • L. Székelyhidi
    • 1
  1. 1.Department of MathematicsUniversity of DebrecenDebrecen, PF. 12

Personalised recommendations