BIT Numerical Mathematics

, Volume 28, Issue 4, pp 791–802 | Cite as

Why do so many cubature formulae have so many positive weights?

  • Ronald Cools
  • Ann Haegemans
Part II Numerical Mathematics

Abstract

We consider cubature formulae which are invariant with respect to a transformation group and prove sufficient conditions for such formulae to have positive weights. This is worked out for different symmetries: we consider central symmetric, symmetric and fully symmetric cubature formulae. The theoretical results are illustrated with examples.

Subject classification

AMS(MOS) 65D32 CR G.1.4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Cools and A. Haegemans,Construction of fully symmetric cubature formulae of degree 4k — 3for fully symmetric planar regions, Report TW 71, K. U. Leuven (1985).Google Scholar
  2. 2.
    R. Cools and A. Haegemans,Construction of fully symmetric cubature formulae of degree 4k — 3for fully symmetric planar regions, Journal C. A. M. 17 (1987), 173–180.Google Scholar
  3. 3.
    R. Cools and A. Haegemans,Construction of symmetric cubature formulae with the number of knots (almost) equal to Möller's lower bound, Report TW 97, K. U. Leuven (1987).Google Scholar
  4. 4.
    P. J. Davis,Interpolation and Approximation, Blaisdell N.Y. (1963).Google Scholar
  5. 5.
    D. A. Dunavant,Economical symmetrical quadrature rules for complete polynomials over a square domain, Int. J. Num. Meth. Eng. 21 (1985), 1777–1784.Google Scholar
  6. 6.
    A. Haegemans and R. Piessens,Construction of cubature formulas of degree eleven for symmetric planar regions, using orthogonal polynomials, Numer. Math. 25 (1976), 139–148.Google Scholar
  7. 7.
    A. Haegemans and R. Piessens,Construction of cubature formulas of degree seven and nine for symmetric planar regions, using orthogonal polynomials, SIAM J. Numer. Anal. 14 (1977), 492–508.Google Scholar
  8. 8.
    F. Mantel,Rectangular symmetric multidimensional cubature structures, The Weizmann Institute of Science, Rehovot, Israel (1978).Google Scholar
  9. 9.
    H. M. Möller,Polynomideale und Kubaturformeln, Dissertation, Universität Dortmund (1973).Google Scholar
  10. 10.
    H. M. Möller, Kubaturformeln mit minimaler Knotenzahl, Numer. Math. 25 (1976), 185–200.Google Scholar
  11. 11.
    I. P. Mysovskin,On the construction of cubature formulas with fewest nodes, Soviet Math. Dokl. 9 (1968), 277–280.Google Scholar
  12. 12.
    S. L. Sobolev,Formulas of mechanical cubature on the surface of a sphere (in Russ.), Sibirsk. Mat. Z. 3 (1962), 769–796.Google Scholar
  13. 13.
    A. H. Stroud,Approximate Calculation of Multiple Integrals, Prentice Hall, Englewood Cliffs, N.Y. (1971).Google Scholar

Copyright information

© BIT Foundations 1988

Authors and Affiliations

  • Ronald Cools
    • 1
  • Ann Haegemans
    • 1
  1. 1.Department of Computer ScienceKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations