Advertisement

European Journal of Pediatrics

, Volume 153, Issue 10, pp 751–755 | Cite as

Cyclic variation pattern of cerebral blood flow velocity and postconceptional age

  • E. Michel
  • B. Zernikow
  • J. Steck
  • G. Kohlmann
  • K. von Siebenthal
  • S. Hirano
  • A. Fock
  • P. Casaer
  • G. Jorch
Neonatology Original Paper

Abstract

In preterm neonates, the risk for intracerebral haemorrhage is linked to immaturity of cerebral autoregulation. The preterm's 2–5/min cyclic variation pattern of cerebral blood flow velocity is thought to reflect the degree of immaturity of autoregulation — a speculation to be tested. In a cross-sectional study 15 infants (gestational age 26–40 weeks, postconceptional age (PCA) 26–42 weeks, age 1–99 days were investigated. We performed a 10 min pulsed Doppler tracing on an internal carotid artery by means of a computer controlled 5 MHz Duplex device. Systolic velocity (Vs) was recorded pulse by pulse. After appropriate data transformation, in all infants the Fast Fourier Transform of the time course of Vs revealed the presence of a 2–5/min cyclic variation pattern (one sample z-test,P<0.0001). There was no significant correlation between proportionate spectral power of the 2–5/min frequency band and either PCA (r=0.23,P=0.42) or age (r=0.41,P=0.13). Between 26 and 42 weeks PCA, the cycling phenomenon is constant thus not reflecting cerebral maturation, and its presence does not mean immaturity of cerebral autoregulation.

Key words

Autoregulation Cerebral blood flow velocity Doppler Newborn Nonlinear control theory 

Abbreviations

AR

autoregulation

BW

birth weight

CBF

cerebral blood flow

CBFV

cerebral blood flow velocity

CBFV-O

cerebral blood flow velocity oscillation

GA

gestational age

LF

low frequency

PCA

postconceptional age

PIVH

peri-intraventricular haemorrhage

PNA

postnatal age

PVL

periventricular leucomalacia

Vs

systolic velocity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anthony MY, Evans DH, Levene MI (1991) Cyclical variations in cerebral blood flow velocity. Arch Dis Child 66: 12–16PubMedGoogle Scholar
  2. 2.
    Baldzer K, Dykes FD, Jones SA, Brogan M, Carrigan TA, Giddens DP (1989) Heart rate variability analysis in full-term infants: spectral indices of neonatal cardiorespiratory control. Pediatr Res 26: 188–195PubMedGoogle Scholar
  3. 3.
    Bender E (1972) Messen-Regeln-Steuern. Fischer Taschenbuch Verlag, Frankfurt a.M., pp 96–105Google Scholar
  4. 4.
    Cowan F (1983) Cerebral blood flow velocity in the sleeping normal newborn infant. Studies on the cerebral circulation of the newborn infant. (Thesis) Oslo: A/S Holstad-TrykkGoogle Scholar
  5. 5.
    Cowan F, Thoresen M (1987) The effect of intermittent positive-pressure ventilation on cerebral arterial and venous blood velocities in the newborn infant. Acta Pediatr Scand 76: 239–247Google Scholar
  6. 6.
    Coughtrey H, Rennie JM, Evans DA (1992) Postnatal evolution of slow variability in cerebral blood flow velocity. Arch Dis Child 67: 412–415PubMedGoogle Scholar
  7. 7.
    Elligsen I, Hauge A, Nicolaysen M, Thoresen M, Walloe L (1987) Changes in human cerebral blood flow due to step changes inPaO2 andPaCO2. Acta Physiol Scand 129: 157–163PubMedGoogle Scholar
  8. 8.
    Hauge A, Thoresen M, Walloe L (1980) Changes in cerebral blood flow during hyperventilation and CO2-breathing measured transcutaneously in humans by a bedirectional, pulsed, ultrasound Doppler blood velocity meter. Acta Physiol Scand 110: 167–173PubMedGoogle Scholar
  9. 9.
    Hyndman BW (1974) The role of rhythms in homeostasis. Kybernetik 15: 227–236PubMedGoogle Scholar
  10. 10.
    Hyndman BW, Kitney RI, McSayers BA (1971) Spontaneous rhythms in physiological control systems. Nature 233: 339–341PubMedGoogle Scholar
  11. 11.
    Kitney RI (1974) An analysis of the nonlinear behaviour of the human thermal vasomotor control system. J Theor Biol 52: 231–248Google Scholar
  12. 12.
    Kitney RI (1979) A nonlinear model for studying oscillations in the blood pressure control system. J Biomed Eng 1: 89–90PubMedGoogle Scholar
  13. 13.
    Klingelhöfer J, Sander D (1993) Transcranial Doppler ultrasonography in sleep. In: Babikian VL, Wechsler LR (eds) Transcranial Doppler ultrasonography. Mosby. St. Louis, pp 150–159Google Scholar
  14. 14.
    Lou HC, Lassen NA, Friis-Hansen B (1979) Impaired autoregulation of cerebral blood flow in the distressed newborn infant. J Pediatr 94: 118–121PubMedGoogle Scholar
  15. 15.
    Mautner-Huppert D, Haberl RL, Dirnagl U, Villringer A, Schmiedek P, Einhaupl K (1989) B-waves in healthy persons. Neurol Res 11: 194–196PubMedGoogle Scholar
  16. 16.
    Menke J, Michel E, Rabe H, Bresser BW, Grohs B, Schmidt RM, Jorch G (1993) Simultaneous influence of blood pressure, PCO2 andPO2 on cerebral blood flow velocity in preterm infants less than 33 weeks gestation. Pediatr Res 34: 173–177PubMedGoogle Scholar
  17. 17.
    Miall-Allen VM, Vries LS de, Dubowitz LMS, Whitelow AGL (1989) Blood-pressure fluctuation and intraventricular hemorrhage in the preterm infant of less than 31 weeks' gestation. Pediatrics 83 (5): 657–661PubMedGoogle Scholar
  18. 18.
    Michel E, Zernikow B, Rabe H, Jorch G (1993) Adaptive multipurpose probe fixation derice for use on newborns. Ultrasound Med Biol 19(7): 581–586PubMedGoogle Scholar
  19. 19.
    Minorsky N (1958) Dynamics of nonlinear mechanics. The theory of oscillations. John Wiley, New York, pp 152–178Google Scholar
  20. 20.
    Mohler RR (1987) Controls, bilinear systems. In: Meyers RA (ed) Encyclopedia of physical science and technology Vol 3. Academic Press, Orlando, pp 627–643Google Scholar
  21. 21.
    Newell DM, Aaslid R, Stooss R, Reulen HJ (1992) The relationship of blood flow velocity fluctuations to intracranial pressure B waves. J Neurosurg 76: 415–421PubMedGoogle Scholar
  22. 22.
    Oppenheim AV and Willsky AS (1992) Signale und Systeme. VCH, Weinheim, GermanyGoogle Scholar
  23. 23.
    Perlman JM, McMenamin JB, Volpe JJ (1983) Fluctuating cerebral blood-flow velocity in respiratory-distress syndrom: relation to the development of intraventricular hemorrhage. N Engl J Med 309: 204–209PubMedGoogle Scholar
  24. 24.
    Perlman JM, Godman S, Kreusser KL, Volpe JJ (1985) Reduction in intraventricular hemorrhage by elimination of fluctuating cerebral blood-flow velocity in preterm infants with respiratory distress syndrom. N Engl J Med 312: 1353–1357PubMedGoogle Scholar
  25. 25.
    Perry EH, Bada HS, Ray JD, Korones SB, Arheart K, Magill HL (1990) Blood pressure increases, birth weight dependent stability boundary, and intraventricular hemorrhage. Pediatrics 85: 727–732PubMedGoogle Scholar
  26. 26.
    Rabe H, Grohs B, Bresser BW, Jorch G (1990) Continuous Doppler sonography: a new method of monitoring cerebral circulation in very low birthweight infants. Klin Paediatr 202: 383–386Google Scholar
  27. 27.
    Shott S (1990) Statistics for health professionals. Saunders, Philadelphia, pp 106–109Google Scholar
  28. 28.
    Volpe JJ (1989) Intraventricular hemorrhage in the premature infant—current concepts. Part 1. Ann Neurol 25(1): 3–11PubMedGoogle Scholar
  29. 29.
    Volpe JJ (1990) Brain injury in the premature infant: Is it preventable? Pediatr Res 27 [Suppl]: 28–33Google Scholar
  30. 30.
    Zernikow B, Michel E, Kohlmann G, Steck J, Schmitt RM, Jorch G (1994) Cerebral autoregulation of preterm neonates — a non-linear control system? Arch Dis Child 70: F166-F173Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • E. Michel
    • 1
  • B. Zernikow
    • 1
  • J. Steck
    • 2
  • G. Kohlmann
    • 2
  • K. von Siebenthal
    • 3
  • S. Hirano
    • 3
  • A. Fock
    • 3
  • P. Casaer
    • 3
  • G. Jorch
    • 1
  1. 1.Universitäts-KinderklinikMünsterGermany
  2. 2.Fraunhofer InstitutSt. IngbertGermany
  3. 3.KinderneurologieUniversitaire ZiekenhuisenLeuvenBelgium

Personalised recommendations