Skip to main content
Log in

X-ray microanalysis: a histochemical tool for elemental analysis

  • Review
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • ABRAHAM, J. L. (1980) Biomedical microanalysis—putting it to work now in diagnostic pathology.Scan. Electron Microsc. 4, 171–8.

    PubMed  Google Scholar 

  • APPLETON, T. C. (1977) The use of ultrathin frozen sections for X-ray microanalysis of diffusible elements. InAnalytical and Quantitative Methods in Microscopy (edited by MEEK, G. A. and ELDER, H. Y.), pp. 247–68. Cambridge: Cambridge University Press.

    Google Scholar 

  • BACCETTI, B. & BURRINI, A. G. (1977) Detection of concanavalin A receptors by affinity to peroxidase and iron dextran by scanning and transmission electron microscopy and X-ray microanalysis.J. Microsc. 109, 203–9.

    PubMed  Google Scholar 

  • BACSY, E. (1982) Enzymic heterogeneity of adrenocortical lysosomes: an X-ray microanalytical study.Histochem. J. 14, 99–112.

    Article  PubMed  Google Scholar 

  • BAHR, G. F. & ZEITLER, E. (1965) The determination of the dry mass of populations of isolated particles.Lab. Invest. 14, 955–77.

    PubMed  Google Scholar 

  • BARBI, N. C. (1980) Detectability in energy dispersive microanalysis.Scan. Electron Microsc. 2, 297–308.

    Google Scholar 

  • BARNARD, T. & THOMAS R. S. (1978) X-ray, microanalysis of Epon sections after oxygen plasma microincineration.J. Microsc. 113, 269–76.

    PubMed  Google Scholar 

  • BEEUWKES, R. & ROSEN, S. (1975) Renal sodium-potassium adenosine triphosphatase optical localization and X-ray microanalysis.J. Histochem. Cytochem. 23, 828–39.

    PubMed  Google Scholar 

  • BERRY, J. P., HOURDRY, J., STERNBERG, M., & GALLE, P. (1982) Aluminium phosphate visualisation of acid phosphatase activity: a biochemical and X-ray microanalysis study.J. Histochem. Cytochem. 30, 86–90.

    PubMed  Google Scholar 

  • BLATTNER, R. J. & EVANS, C. A. (1980) High performance secondary ion mass spectrometry.Scan. Electron Microsc. 4, 55–68.

    Google Scholar 

  • BOEKESTEIN, A., STOLS, A. L. H. & STADHOUDERS, A. M. (1980) Quantitation in X-ray microanalysis of biological bulk specimens.Scan. Electron Microsc. 2, 321–34.

    Google Scholar 

  • BOWEN, I. D. & RYDER, T. A. (1978) The application of X-ray microanalysis to histochemistry. InElectron Probe Microanalysis in Biology (edited by ERASMUS, D. A.) pp. 183–211. London: Chapman & Hall.

    Google Scholar 

  • BOWEN, I. D., RYDER, T. A. & DOWNING, N. L. (1976) An X-ray microanalytical azo dye technique for the localization of acid phosphatase activityHistochemistry 49, 43–50.

    Article  PubMed  Google Scholar 

  • BOWEN, I. D., RYDER, T. A. & WINTERS, C., (1975) The distribution of oxidizable mucosubstances and polysaccharides in the planarianPolycelis tenuis Iijima.Cell Tiss Res. 161, 263–75

    Article  Google Scholar 

  • CHANDLER, J. A. (1973) Recent developments in analytical electron microscopy.J. Microsc. 98, 359–78.

    PubMed  Google Scholar 

  • CHANDLER, J. A. (1975) Electron probe X-ray microanalysis in cytochemistry. InTechniques of Biochemical and Biophysical Morphology (edited by GLICK, D. and ROSENBAUM, R. M.), Vol. 2, pp. 307–437 New York: Wiley Interscience.

    Google Scholar 

  • CHANDLER, J. A. (1977)X-ray Microanalysis in the Electron Microscope, pp. 411–417 Amsterdam: North-Holland.

    Google Scholar 

  • CHANDLER, J. A. & BATTERSBY, S. (1976a) X-ray microanalysis of zinc and calcium in ultrathin sections of human sperm cells using the pyroantimonate technique.J. Histochem. Cytochem. 24, 740–8.

    PubMed  Google Scholar 

  • CHANDLER, J. A. & BATTERSBY, S. (1976b) X-ray microanalysis of ultrathin frozen and freeze-dried sections of human sperm cells.J. Microsc. 107, 55–65.

    PubMed  Google Scholar 

  • COLEMAN, J. R. & TEREPKA, A. R. (1972) Electron probe analysis of the calcium distribution in cells of the embryonic chick chorioallantoic membrane. I.A. critical evaluation of techniques.J. Histochem. Cytochem. 20, 401–13.

    PubMed  Google Scholar 

  • COSSLETT, V. E. (1978) Radiation damage in the high resolution electron microscopy of biological materials: a review.J. Microsc. 113, 113–29.

    PubMed  Google Scholar 

  • COSSLETT, V. E. (1980) Progress in electron energy loss analysis for biological specimens.Scan. Electron Microsc. 2, 575–82.

    Google Scholar 

  • DE FILIPPIS, L. F. & PALLAGHY, C. K. (1975) Localization of zinc and mercury in plant cells.Micron. 6, 111–20.

    Google Scholar 

  • ECHLIN, P., LAI, C. E. & HAYES, T. L. (1982) Low temperature X-ray microanalysis of the differentiating vascular tissue in root tips ofLemna minor L.J. Microsc. 126, 285–306.

    Google Scholar 

  • ECHLIN, P. & MORETON, R. (1974) The preparation of biological materials for X-ray microanalysis. InMicroprobe Analysis as applied to Cells and Tissues (edited by HALL, T., ECHLIN, P. and KAUFMANN, R.) pp. 159–174 London, New York: Academic Press.

    Google Scholar 

  • EDIE, J. W. & GLICK, P. L. (1980) Electron irradiation effects in the EPMA quatitation of organic specimens.Scan. Electron Microsc. 2, 271–84.

    Google Scholar 

  • ELDER, H. Y., GRAY, C. C., JARDINE, A. G., CHAPMAN, J. N. & BIDDLECOMBE, W. H. (1982) Optimum conditions for cryoquenching of small tissue blocks in liquid coolants.J. Microsc. 126, 45–61.

    PubMed  Google Scholar 

  • ENGEL, W. K., RESNICK, J. S. & MARTIN, E. (1968) The electron probe in enzyme histochemistryJ. Histochem. Cytochem.,16 273–5.

    PubMed  Google Scholar 

  • ERASMUS, D. A. (1974) The application of X-ray analysis in the transmission electron microscope to a study of drug distribution, in the parasiteSchistosoma mansoni (Platyhelminthes).J. Microsc. 102, 59–69.

    PubMed  Google Scholar 

  • FUCHS, W. & FUCHS, H. (1980) The use of frozen-hydrated bulk specimens for X-ray microanalysis.Scan. Electron Microsc. 2, 371–82.

    Google Scholar 

  • GALLE, P. & LEFEVRE, R. (1979) Secondary ion, emission microanalysis: biomedical applications. InMicrobeam Analysis in Biology (edited by LECHENE, C. P. and WARNER, R. R.), pp 117–128. New York, London: Academic Press.

    Google Scholar 

  • GARFIELD, R. E., HENDERSON, R. M. & DANIEL, E. E. (1972) Evaluation of the pyroantimonate technique for localisation of tissue sodium.Tiss. Cell 4, 575–89.

    Google Scholar 

  • GEORGE, S. G., NOTT, J. A., PIRIE, B. J. S. & MASON, A. Z. (1976) A comparative and quantitative study of cadmium retention in tissues of a marine bivalve during different fixation and embedding procedures.Proc. R. Microsc. Soc. 11, Suppl., 42.

    Google Scholar 

  • GULLVAG, B. M., NILSON, A. & MYLIUS, E. (1980) X-ray microanalytical studies of alveolar macrophages (AM) from expectorate samples as part of a test of effect of occupational particulate air pollution.Scan. Electron Microsc. 2, 339–48.

    Google Scholar 

  • GUPTA, B. L. & HALL, T. A. (1979) Quantitative electron probe X-ray microanalysis of electrolyte elements within epithelial tissue compartments.Fed. Proc. 38, 144–53.

    PubMed  Google Scholar 

  • GUPTA, B. L., HALL, T. A. & MORETON, R. B. (1977) Electron probe X-ray microanalysis. InTransport of Ions and Water in Animals (edited by GUPTA, B. L., MORETON, R. B., OSCHMAN, J. L. and WALL, B. J.), pp. 83–143. London, New York: Academic Press.

    Google Scholar 

  • HALE, A. J. (1962) Identification of cytochemical reaction products by scanning X-ray emission microanalysis.J. Cell Biol. 15, 427–35.

    Article  PubMed  Google Scholar 

  • HALJAMÄE, H. & WALDMAN, A. A. (1972) Flame photometry at the cell level. InTechniques of Biochemical and Biophysical Morphology (edited by GLICK, D. and ROSENBAUM, R. M.), Vol. I, pp. 233–263, New York: Wiley Interscience.

    Google Scholar 

  • HALL, T. A. (1971) The microprobe assay of chemical elements. InPhysical Techniques in Biological Research (edited by OSTER, G.), 2nd edn, Vol. 1A, pp. 157–275. New York: Academic Press.

    Google Scholar 

  • HALL, T. A. (1977) Reduction of background due to backscattered electrons in energy-dispersive X-ray microanalysis.J. Microsc. 110, 103–6.

    PubMed  Google Scholar 

  • HALL, T. A. (1979) Biological X-ray microanalysis.J. Microsc. 117, 145–63.

    PubMed  Google Scholar 

  • HALL, T. A., ANDERSON, H. C. & APPLETON, T. (1973) The use of thin specimens for X-ray microanalysis in biology.J. Microsc. 99, 177–82.

    Google Scholar 

  • HALL, T. A. & PUPTA, B. L. (1974) Beam-induced loss of organic mass under electron-microprobe conditions.J. Microsc. 100, 177–88.

    PubMed  Google Scholar 

  • HALL, T. A. & PETERS, P. D. (1974) Quantitative analysis of thin sections, and the choice of standards. InMicroprobe Analysis as applied to Cells and Tissues (edited by HALL, T., ECHLIN, P. and KAUFMANN, R.), pp. 229–237. London, New York: Academic Press.

    Google Scholar 

  • HARADA, Y., TOMITA, T., WATABE, H. & ETOH, T. (1979) Reduction of contamination in analytical electron microscopy.Scan. Electron Microsc. 2, 103–10.

    Google Scholar 

  • HARVEY, D. M. R. (1982) Freeze-substitution.J. Microsc. 127, 209–21.

    PubMed  Google Scholar 

  • HARVEY, D. M. R. & KENT B. (1981) Sodium localization inSuaeda maritima leaf cells using zinc uranyl acetate precipitation.J. Microsc. 121, 179–83.

    Google Scholar 

  • HERBST, R. & HODER, D. (1978) Cathodoluminescence in biological studies.Scanning 1, 35–41.

    Google Scholar 

  • HODGES, G. M. & MUIR, M. D. (1975) Quantitative evaluation of autoradiographs by X-ray spectroscopy.J. Microsc. 104, 173–78.

    PubMed  Google Scholar 

  • HODSON, S. & MARSHALL, J. (1971) Migration of potassium out of electron-microscope specimens.J. Microsc. 93 49–53.

    PubMed  Google Scholar 

  • HÖHLING, H. J. & NICHOLSON, W. A. P. (1975) Electron microprobe analysis in hard tissue research: specimen preparation.J. Microsc. Biol. Cell 22, 185–92.

    Google Scholar 

  • HOLM, R. & REINFANDT, B. (1978) Auger microanalysis in a conventional scanning electron microscope.Scanning 1, 42–57.

    Google Scholar 

  • HOUGH, P. V. C., MCKINNEY, W. R., LEDBETTER, M. C., POLLACK, R. E., & MOOS, H. W. (1976) Identification of biological molecules in situ at high resolution via the fluorescence excited by a scanning electron beam.Proc. natn. Acad. Sci., U.S.A. 73, 317–21.

    Google Scholar 

  • HOYER, L. C., LEE, J. C. & BUCANA, C. (1979) Scanning immunoelectron microscopy for the identification and mapping of two or more antigens on cell surfaces.Scan. Electron Microsc. 3, 629–36.

    PubMed  Google Scholar 

  • HUTCHINSON, T. E. & BOREK, J. R. (1979) Experimental determination of detection limits and calibration constants for energy-dispersive X-ray analysis using thin film frozen-hydrated solutions.Ultramicroscopy 4, 233–9.

    Article  Google Scholar 

  • HUTCHINSON, T. E., JOHNSON, D. E., & MACKENZIE, A. P. (1978) Instrumentation for direct observation of frozen-hydrated specimens in the electron microscope.Ultramicroscopy 3, 315–24.

    Article  PubMed  Google Scholar 

  • INGRAM, F. D. & INGRAM, M. J. (1980) Freeze-dried, plastic-embeded tissue preparation: a review.Scan. Electron Microsc. 4, 147–60.

    PubMed  Google Scholar 

  • KOTRBA, Z. (1979) The influence of conductive coatings on the accuracy of X-ray microanalysis.Microsc. Acta 82, 59–68.

    Google Scholar 

  • LANDIS, W. J. (1979) Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.Scan. Electron Microsc. 2, 555–70.

    PubMed  Google Scholar 

  • Landis, W. J. &Glimcher, M. J. (1978) Electron diffraction and electron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques.J. Ultrastruct. Res. 63, 188–223.

    Article  PubMed  Google Scholar 

  • Läuchli, A., Stelzer, R., Guggenheim, R. &Henning, L. (1974) Precipitation techniques as a means for intracellular ion localisation by use of electron probe analysis. InMicroprobe Analysis as applied to Cells and Tissues (edited byHall, T., Echlin, P. andKaufmann, R.), pp. 107–118. London, New York: Academic Press.

    Google Scholar 

  • Lechene, C. P., Bronner, C. &Kirk, R. G. (1977) Electron probe microanalysis of chemical elemental content of single human red cells.J. Cell Physiol. 90 117–26.

    Article  PubMed  Google Scholar 

  • Lechene, C. P. &Warner, R. R. (1977) Ultramicroanalysis: X-ray spectrometry by electron probe excitation.Ann. Rev. Biophys. Bioeng. 6, 57–85.

    Article  Google Scholar 

  • Lever, J. D., Santer, R. M., Lu, K. S. &Presley, R. (1977) Electron probe X-ray microanalysis of small granulated cells in rat sympathetic ganglia after sequential aldehyde and dichromate treatment.J. Histochem. Cytochem. 25, 275–9.

    PubMed  Google Scholar 

  • Lifshin, E., Ciccarelli, M. F. &Bolon, R. B. (1975) X-ray spectral measurement and interpretation. InPractical Scanning Electron Microscopy (edited byGoldstein, J. I. andYakowitz, H.), pp. 263–297. New York, London: Plenum Press.

    Google Scholar 

  • Love, G., Scott, V. D., Dennis, N. M. T. &Laurenson, L. (1981) Sources of contamination in electron optical equipment.Scanning 4, 32–9.

    Google Scholar 

  • McGowan, J. W. &Malachowski, M. J. (1980) Soft X-ray replication of biological material — X-ray microscopy and microchemical analysis of cells.Ann. N.Y. Acad. Sci. 342, 288–303.

    PubMed  Google Scholar 

  • MacKnight, A. D. C. (1980) Comparison of analytic techniques: chemical, isotopic and microprobe analyses.Fed. Proc. 39, 2881–7.

    PubMed  Google Scholar 

  • Marshall, A. T. (1977) Electron probe X-ray microanalysis of frozen-hydrated biological specimens.Microsc. Acta 79, 254–66.

    PubMed  Google Scholar 

  • Marshall, A. T. (1980a) Principles and instrumentation. InX-ray Microanalysis in Biology (edited byHayat, M. A.), pp. 1–64. Baltimore: University Park Press.

    Google Scholar 

  • Marshall, A. T. (1980b) Freeze-substitution as a preparation technique for biological X-ray microanalysis.Scan. Electron Microsc. 2, 395–408.

    Google Scholar 

  • Marshall, A. T. (1980c) Quantitative X-ray microanalysis of frozen-hydrated bulk biological specimens.Scan. Electron Microsc. 2, 335–48.

    Google Scholar 

  • Martin, B. W. (1980) A microprobe based on particle-induced X-ray emission (PIXE) — a powerful tool for microanalysis in minerals and cells.Scan. Electron Microsc. 1, 419–38.

    Google Scholar 

  • Martoja, R., Szöllösi, A. &Truchet, M. (1975) Microanalyse et cytochimie.J. Microsc. Biol. Cell 22, 247–60.

    Google Scholar 

  • Meisner, L. F., Chuprevich, T. W., Inhorn, S. L., Indriksons, A. &Peterson, G. G. (1973) Microanalysis of chromosomes with X-ray energy dispersion.Lancet 2, 561.

    Article  Google Scholar 

  • Mitchell, N., Shepard, N. &Harrod, J. (1980) The use of brominated toluidine blue 0 in X-ray microanalysis of proteoglycan.Histochemistry 68, 245–51.

    Article  PubMed  Google Scholar 

  • Moreton, R. B. (1981) Electron-probe X-ray microanalysis: techniques and recent applications in biology.Biol. Rev. 56, 409–61.

    PubMed  Google Scholar 

  • Morgan, A. J. (1979) Non-freezing techniques of preparing biological specimens for electron microprobe X-ray microanalysis.Scan. Electron Microsc. 2, 635–48.

    PubMed  Google Scholar 

  • Morgan, A. J. (1980) Preparation of specimens. Changes in chemical integrity. InX-ray Microanalysis in Biology (edited byHayat, M. A.), pp. 65–165. Baltimore: University Park Press.

    Google Scholar 

  • Morgan, A. J., Davies, T. W. &Erasmus, D. A. (1975a) Analysis of droplets from iso-atomic solutions as a means of calibrating a transmission electron analytical microscope (TEAM).J. Microsc. 104, 271–80.

    Google Scholar 

  • Morgan, A. J., Davies, T. W. &Erasmus, D. A. (1975b) Changes in the concentration and distribution of elements during electron microscope preparative procedures.Micron 6, 11–23.

    Google Scholar 

  • Nasir, M. J. (1976) X-ray analysis without the need for standards.J. Microsc. 108, 79–87.

    Google Scholar 

  • Neumann, B., Reimer, L. &Wellmanns, B. (1978) A permanent magnet system for electron deflection in front of an energy dispersive X-ray spectrometer.Scanning 1, 130–1.

    Google Scholar 

  • Nicholson, W. A. P. &Hall, T. A. (1973) X-ray fluorescence microanalysis of thin biological specimens.J. Physics, E: Sci. Instr. 6, 781–4.

    Google Scholar 

  • Ottensmeyer, F. P. (1982) Scattered electrons in microscopy and microanalysis.Science 215, 461–6.

    PubMed  Google Scholar 

  • Pallaghy, C. K. (1973) Electron probe microanalysis of potassium and chloride in freeze-substituted leaf sections ofZea mays.Aust. J. biol. Sci. 25, 1015–34.

    Google Scholar 

  • Panessa, B. J. (1979) Use of beryllium and graphite-polymer subtrates to reduce spurious X-ray signal. InMicrobeam Analysis in Biology (edited byLechene, C. P. andWarner, R. R.), pp. 591–613. New York, Academic Press.

    Google Scholar 

  • Quinton, P. M. (1978) Ultramicroanalysis of biological fluids with energy dispersive X-ray spectrometry.Micron 9, 57–69.

    Google Scholar 

  • Quinton, P. M. (1979) Energy dispersive X-ray analysis of biological microdroplets. InMicrobeam Analysis in Biology (edited byLechene, C. P. andWarner, R. R.), pp. 327–345. New York, London: Academic Press.

    Google Scholar 

  • Reed, S. J. B. (1975)Electron Microprobe Analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Robison, W. L. (1973) Applications of the electron microprobe to the analysis of biological materials. InMicroprobe Analysis (edited byAndersen, C. A.), 271–321. New York: Wiley.

    Google Scholar 

  • Roomans, G. M. (1979a) Standards for X-ray microanalysis of biological specimens.Scan. Electron Microsc. 2, 649–57.

    Google Scholar 

  • Roomans, G. M. (1979b) Quantitative X-ray microanalysis of halogen elements in biological specimens.Histochemistry 65, 49–58.

    Article  PubMed  Google Scholar 

  • Roomans, G. M. (1980) Problems in quantitative X-ray microanalysis of biological specimens.Scan. Electron Microsc. 2, 309–20.

    Google Scholar 

  • Roomans, G. M. &Kuypers, G. A. J. (1980) Background determination in X-ray microanalysis of biological thin sections.Ultramicroscopy 5, 81–3.

    Article  PubMed  Google Scholar 

  • Roomans, G. M. &Van Gaal, H. L. M. (1977) Organometallic and organometalloid compounds as standards for microprobe analysis of epoxy resin embedded tissue.J. Miscrosc. 109, 235–40.

    Google Scholar 

  • Rosenquist, T. H. (1977) Atomic absorption spectrophotometry in quantitative histochemistry.Histochem. J. 9, 127–39.

    Article  PubMed  Google Scholar 

  • Ross, A., Sumner, A. T. &Ross, A. R. (1981) Preparation and assessment of frozen-hydrated sections of mammalian tissue using commercially available equipment.J. Microsc. 121, 261–72.

    PubMed  Google Scholar 

  • Russ, J. C. (1974) X-ray microanalysis in the biological sciences.J. submicrosc. Cytol. 6, 55–79.

    Google Scholar 

  • Russ, J. C. (1978) Electron probe X-ray microanalysis — principles. InElectron Probe Micronalysis in Biology (edited byErasmus, D. A.), pp. 5–36. London: Chapman & Hall.

    Google Scholar 

  • Salpeter, M. M. &Bachmann, L. (1972) Autoradiography. InPrinciples and Techniques of Electron Microscopy (edited byHayat, M.), Vol. 2, pp. 219–278. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Schmidt, P. F., Fromme, H. G. &Pfefferkorn, G. (1980) LAMMA — investigations of biological and medical specimens.Scan. Electron Microsc. 2, 623–34.

    Google Scholar 

  • Seveus, L. (1980) Cryoultramicrotomy as a preparation method for X-ray microanalysis.Scan. Electron Microsc. 4, 161–70.

    PubMed  Google Scholar 

  • Shuman, H. &Somlyo, A. P. (1976) Electron probe X-ray analysis of single ferritin molecules.Proc. natn. Acad. Sci., U.S.A. 73, 1193–5.

    Google Scholar 

  • Shuman, H., Somlyo, A. V. &Somlyo, A. P. (1976) Quantitative electron probe microanalysis of biological thin sections: methods and validity.Ultramicroscopy 1, 317–39.

    PubMed  Google Scholar 

  • Sims, R. T. &Marshall, D. J. (1966) Location of nucleic acids by electron probe X-ray microanalysis.Nature, Lond,212, 1359.

    Google Scholar 

  • Simson, J. A. V., Bank, H. L. &Spicer, S. S. (1979) X-ray microanalysis of pyroantimonate-precipitable cations.Scan. Electron Microsc. 2, 779–92.

    PubMed  Google Scholar 

  • Sjöström, M. (1980) The skeletal muscle. InX-ray Microanalysis in Biology (edited byHayat, M. A.), pp. 263–306. Baltimore: University Park Press.

    Google Scholar 

  • Skaer, H. (1982) Chemical cryoprotection for structural studies.J. Microsc. 125, 137–47.

    Google Scholar 

  • Skaer, H. Le B., Franks, F., Asquith, M. H. &Echlin, P. (1977) Polymeric cryoprotectants in the preservation of biological ultrastructure. III. Morphological aspects.J. Microsc. 110, 257–70.

    PubMed  Google Scholar 

  • Somlyo, A. P., Somlyo, A. V., Shuman, H. &Stewart, M. (1979) Electron probe analysis of muscle and X-ray mapping of biological specimens with a field emission gun.Scan. Electron Microsc. 2, 711–22.

    PubMed  Google Scholar 

  • Spurr, A. R. (1974) Macrocyclic polyether complexes with alkali elements in epoxy resin as standards for X-ray analysis of biological tissues. InMicroprobe Analysis as applied to Cells and Tissues (edited byHall, T., Echlin, P. andKaufmann, R.), pp. 213–227. London, New York: Academic Press.

    Google Scholar 

  • Spurr, A. R. (1975) Choice and preparation of standards for X-ray microanalysis of biological materials with special reference to macrocyclic polyether complexes.J. Microsc. Biol. Cell 22, 287–302.

    Google Scholar 

  • Spurr, A. R. (1980) Applications of SIMS in biology and medicine.Scanning 3, 97–109.

    Google Scholar 

  • Statham, P. J. (1979) Measurement and use of peak-to-background ratios in X-ray analysis.Mikrochim. Acta Suppl. 8, 229–42.

    Google Scholar 

  • Statham, P. J. (1981) X-ray microanalysis with Si(Li) detectors.J. Microsc. 123, 1–23.

    Google Scholar 

  • Statham, P. J. &Jones, M. (1980) Elemental mapping using digital storage and colour display.Scanning 3, 168–71.

    Google Scholar 

  • Statham, P. J. &Pawley, J. B. (1978) A new method for particle X-ray microanalysis based on peak to background measurements.Scan. Electron Microsc. 1, 469–78.

    Google Scholar 

  • Stenn, K. &Bahr, G. F. (1970) Specimen damage caused by the beam of the transmission electron microscope, a correlative reconsideration.J. Ultrastruct. Res. 31, 526–50.

    Article  PubMed  Google Scholar 

  • Sumner, A. T. (1978a) Changes in elemental composition of human chromosomes during a G-banding (ASG) and a C-banding (BSG) procedure.Histochem. J. 10, 201–11.

    Article  PubMed  Google Scholar 

  • Sumner, A. T. (1978b) Quantitation in biological X-ray microanalysis with particular reference to histochemistry.J. Microsc. 114 19–30.

    PubMed  Google Scholar 

  • Sumner, A. T. (1981) The distribution of quinacrine on chromosomes as determined by X-ray microanalysis. I. Q-bands on CHO chromosomes.Chromosoma 82, 717–34.

    Article  PubMed  Google Scholar 

  • Sumner, A. T. (1982a) Some observations on the mechanisms of blocking of nuclear staining by cisplatin.Histochem. J. 14, 283–99.

    Article  PubMed  Google Scholar 

  • Sumner, A. T. (1982b) Application of X-ray microanalysis to the study of histochemical staining reactions.Scan. Electron Microsc. 1, 261–8.

    Google Scholar 

  • Swift, J. A. (1979) Minimum depth electron probe X-ray microanalysis as a means for determining the sulphur content of the human hair surface.Scanning 2, 83–8.

    Google Scholar 

  • Tandler, C. J., Libanati, C. M. &Sanchis, C. A. (1970) The intracellular localisation of inorganic cations with potassium pyroantimonate.J. Cell Biol. 45, 355–66.

    Article  PubMed  Google Scholar 

  • Tandler, C. J. &Solari, A. J. (1969) Nucleolar orthophosphate ions. Electron microscope and diffraction studies.J. Cell Biol. 41, 91–108.

    Article  PubMed  Google Scholar 

  • Vallyathan, N. V. &Brody, A. R. (1977) X-ray microanalysis as an adjunct tool in enzyme histochemistry.Scan. Electron Microsc. 2, 93–102.

    Google Scholar 

  • Van Steveninck, M. E. &Van Steveninck, R. F. M. (1981) An X-ray microanalytical examination of precipitation methods for the ultrastructural localisation of potassium in plant tissue. II. Tetraphenyl boron.J. Microsc. 123, 51–60.

    Google Scholar 

  • Van Steveninck, M. E., Van Steveninck, R. F. M. &Mittelheuser, C. J. (1981) An X-ray microanalytical examination of precipitation methods for the ultrastructural localisation of potassium in plant tissue. I. Cobaltinitrite.J. Microsc. 122, 259–74.

    Google Scholar 

  • Van Steveninck, R. F. M., Van Steveninck, M. E., Hall, T. A. &Peters, P. D. (1974) A chlorine-free embedding medium for use in X-ray analytical electron microscope localisation of chloride in biological tissues.Histochemistry 38, 173–80.

    Article  PubMed  Google Scholar 

  • Van Zyl, J., Forrest, Q. G., Hocking, C. &Pallaghy, C. K. (1976) Freeze-substitution of plant and animal tissue for the localisation of water-soluble compounds by electron probe microanalysis.Micron 7, 213–24.

    Google Scholar 

  • Walker, J. L. &Brown, H. M. (1977) Intracellular ionic activity measurements in nerve and muscle.Physiol. Rev. 57, 729–78.

    PubMed  Google Scholar 

  • Wilson, A. J. &Robards, A. W. (1982) Some experiences in the use of a polymeric cryoprotectant in the freezing of plant tissue.J. Microsc. 125, 287–98.

    Google Scholar 

  • Wood, J. G. (1975) Use of the analytical electron microscope (AEM) in cytochemical studies of the central nervous system.Histochemistry 41, 233–40.

    Article  PubMed  Google Scholar 

  • Yarom, R., Peters, P. D. &Hall, T. A. (1974) Effect of glutaraldehyde and urea embedding on intracellular ionic elements. X-ray microanalysis of skeletal muscle and myocardium.J. Ultrastruct. Res. 49, 405–18.

    Article  PubMed  Google Scholar 

  • Zettner, A. (1964) Principles and applications of atomic absorption spectroscopy.Adv. Clin. Chem. 7, 1–62.

    Google Scholar 

  • Zs-Nagy, I., Pieri, C., Guili, C., Bertoni-Freddari, C. &Zs-Nagy, V. (1977) Energy dispersive X-ray microanalysis of the electrolytes in biological bulk specimen. I. Specimen preparation, beam penetration, and quantitative analysis.J. Ultrastruct. Res. 58, 22–33.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumner, A.T. X-ray microanalysis: a histochemical tool for elemental analysis. Histochem J 15, 501–541 (1983). https://doi.org/10.1007/BF01954144

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01954144

Navigation