The Histochemical Journal

, Volume 15, Issue 6, pp 501–541 | Cite as

X-ray microanalysis: a histochemical tool for elemental analysis

  • A. T. Sumner


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABRAHAM, J. L. (1980) Biomedical microanalysis—putting it to work now in diagnostic pathology.Scan. Electron Microsc. 4, 171–8.PubMedGoogle Scholar
  2. APPLETON, T. C. (1977) The use of ultrathin frozen sections for X-ray microanalysis of diffusible elements. InAnalytical and Quantitative Methods in Microscopy (edited by MEEK, G. A. and ELDER, H. Y.), pp. 247–68. Cambridge: Cambridge University Press.Google Scholar
  3. BACCETTI, B. & BURRINI, A. G. (1977) Detection of concanavalin A receptors by affinity to peroxidase and iron dextran by scanning and transmission electron microscopy and X-ray microanalysis.J. Microsc. 109, 203–9.PubMedGoogle Scholar
  4. BACSY, E. (1982) Enzymic heterogeneity of adrenocortical lysosomes: an X-ray microanalytical study.Histochem. J. 14, 99–112.CrossRefPubMedGoogle Scholar
  5. BAHR, G. F. & ZEITLER, E. (1965) The determination of the dry mass of populations of isolated particles.Lab. Invest. 14, 955–77.PubMedGoogle Scholar
  6. BARBI, N. C. (1980) Detectability in energy dispersive microanalysis.Scan. Electron Microsc. 2, 297–308.Google Scholar
  7. BARNARD, T. & THOMAS R. S. (1978) X-ray, microanalysis of Epon sections after oxygen plasma microincineration.J. Microsc. 113, 269–76.PubMedGoogle Scholar
  8. BEEUWKES, R. & ROSEN, S. (1975) Renal sodium-potassium adenosine triphosphatase optical localization and X-ray microanalysis.J. Histochem. Cytochem. 23, 828–39.PubMedGoogle Scholar
  9. BERRY, J. P., HOURDRY, J., STERNBERG, M., & GALLE, P. (1982) Aluminium phosphate visualisation of acid phosphatase activity: a biochemical and X-ray microanalysis study.J. Histochem. Cytochem. 30, 86–90.PubMedGoogle Scholar
  10. BLATTNER, R. J. & EVANS, C. A. (1980) High performance secondary ion mass spectrometry.Scan. Electron Microsc. 4, 55–68.Google Scholar
  11. BOEKESTEIN, A., STOLS, A. L. H. & STADHOUDERS, A. M. (1980) Quantitation in X-ray microanalysis of biological bulk specimens.Scan. Electron Microsc. 2, 321–34.Google Scholar
  12. BOWEN, I. D. & RYDER, T. A. (1978) The application of X-ray microanalysis to histochemistry. InElectron Probe Microanalysis in Biology (edited by ERASMUS, D. A.) pp. 183–211. London: Chapman & Hall.Google Scholar
  13. BOWEN, I. D., RYDER, T. A. & DOWNING, N. L. (1976) An X-ray microanalytical azo dye technique for the localization of acid phosphatase activityHistochemistry 49, 43–50.CrossRefPubMedGoogle Scholar
  14. BOWEN, I. D., RYDER, T. A. & WINTERS, C., (1975) The distribution of oxidizable mucosubstances and polysaccharides in the planarianPolycelis tenuis Iijima.Cell Tiss Res. 161, 263–75CrossRefGoogle Scholar
  15. CHANDLER, J. A. (1973) Recent developments in analytical electron microscopy.J. Microsc. 98, 359–78.PubMedGoogle Scholar
  16. CHANDLER, J. A. (1975) Electron probe X-ray microanalysis in cytochemistry. InTechniques of Biochemical and Biophysical Morphology (edited by GLICK, D. and ROSENBAUM, R. M.), Vol. 2, pp. 307–437 New York: Wiley Interscience.Google Scholar
  17. CHANDLER, J. A. (1977)X-ray Microanalysis in the Electron Microscope, pp. 411–417 Amsterdam: North-Holland.Google Scholar
  18. CHANDLER, J. A. & BATTERSBY, S. (1976a) X-ray microanalysis of zinc and calcium in ultrathin sections of human sperm cells using the pyroantimonate technique.J. Histochem. Cytochem. 24, 740–8.PubMedGoogle Scholar
  19. CHANDLER, J. A. & BATTERSBY, S. (1976b) X-ray microanalysis of ultrathin frozen and freeze-dried sections of human sperm cells.J. Microsc. 107, 55–65.PubMedGoogle Scholar
  20. COLEMAN, J. R. & TEREPKA, A. R. (1972) Electron probe analysis of the calcium distribution in cells of the embryonic chick chorioallantoic membrane. I.A. critical evaluation of techniques.J. Histochem. Cytochem. 20, 401–13.PubMedGoogle Scholar
  21. COSSLETT, V. E. (1978) Radiation damage in the high resolution electron microscopy of biological materials: a review.J. Microsc. 113, 113–29.PubMedGoogle Scholar
  22. COSSLETT, V. E. (1980) Progress in electron energy loss analysis for biological specimens.Scan. Electron Microsc. 2, 575–82.Google Scholar
  23. DE FILIPPIS, L. F. & PALLAGHY, C. K. (1975) Localization of zinc and mercury in plant cells.Micron. 6, 111–20.Google Scholar
  24. ECHLIN, P., LAI, C. E. & HAYES, T. L. (1982) Low temperature X-ray microanalysis of the differentiating vascular tissue in root tips ofLemna minor L.J. Microsc. 126, 285–306.Google Scholar
  25. ECHLIN, P. & MORETON, R. (1974) The preparation of biological materials for X-ray microanalysis. InMicroprobe Analysis as applied to Cells and Tissues (edited by HALL, T., ECHLIN, P. and KAUFMANN, R.) pp. 159–174 London, New York: Academic Press.Google Scholar
  26. EDIE, J. W. & GLICK, P. L. (1980) Electron irradiation effects in the EPMA quatitation of organic specimens.Scan. Electron Microsc. 2, 271–84.Google Scholar
  27. ELDER, H. Y., GRAY, C. C., JARDINE, A. G., CHAPMAN, J. N. & BIDDLECOMBE, W. H. (1982) Optimum conditions for cryoquenching of small tissue blocks in liquid coolants.J. Microsc. 126, 45–61.PubMedGoogle Scholar
  28. ENGEL, W. K., RESNICK, J. S. & MARTIN, E. (1968) The electron probe in enzyme histochemistryJ. Histochem. Cytochem.,16 273–5.PubMedGoogle Scholar
  29. ERASMUS, D. A. (1974) The application of X-ray analysis in the transmission electron microscope to a study of drug distribution, in the parasiteSchistosoma mansoni (Platyhelminthes).J. Microsc. 102, 59–69.PubMedGoogle Scholar
  30. FUCHS, W. & FUCHS, H. (1980) The use of frozen-hydrated bulk specimens for X-ray microanalysis.Scan. Electron Microsc. 2, 371–82.Google Scholar
  31. GALLE, P. & LEFEVRE, R. (1979) Secondary ion, emission microanalysis: biomedical applications. InMicrobeam Analysis in Biology (edited by LECHENE, C. P. and WARNER, R. R.), pp 117–128. New York, London: Academic Press.Google Scholar
  32. GARFIELD, R. E., HENDERSON, R. M. & DANIEL, E. E. (1972) Evaluation of the pyroantimonate technique for localisation of tissue sodium.Tiss. Cell 4, 575–89.Google Scholar
  33. GEORGE, S. G., NOTT, J. A., PIRIE, B. J. S. & MASON, A. Z. (1976) A comparative and quantitative study of cadmium retention in tissues of a marine bivalve during different fixation and embedding procedures.Proc. R. Microsc. Soc. 11, Suppl., 42.Google Scholar
  34. GULLVAG, B. M., NILSON, A. & MYLIUS, E. (1980) X-ray microanalytical studies of alveolar macrophages (AM) from expectorate samples as part of a test of effect of occupational particulate air pollution.Scan. Electron Microsc. 2, 339–48.Google Scholar
  35. GUPTA, B. L. & HALL, T. A. (1979) Quantitative electron probe X-ray microanalysis of electrolyte elements within epithelial tissue compartments.Fed. Proc. 38, 144–53.PubMedGoogle Scholar
  36. GUPTA, B. L., HALL, T. A. & MORETON, R. B. (1977) Electron probe X-ray microanalysis. InTransport of Ions and Water in Animals (edited by GUPTA, B. L., MORETON, R. B., OSCHMAN, J. L. and WALL, B. J.), pp. 83–143. London, New York: Academic Press.Google Scholar
  37. HALE, A. J. (1962) Identification of cytochemical reaction products by scanning X-ray emission microanalysis.J. Cell Biol. 15, 427–35.CrossRefPubMedGoogle Scholar
  38. HALJAMÄE, H. & WALDMAN, A. A. (1972) Flame photometry at the cell level. InTechniques of Biochemical and Biophysical Morphology (edited by GLICK, D. and ROSENBAUM, R. M.), Vol. I, pp. 233–263, New York: Wiley Interscience.Google Scholar
  39. HALL, T. A. (1971) The microprobe assay of chemical elements. InPhysical Techniques in Biological Research (edited by OSTER, G.), 2nd edn, Vol. 1A, pp. 157–275. New York: Academic Press.Google Scholar
  40. HALL, T. A. (1977) Reduction of background due to backscattered electrons in energy-dispersive X-ray microanalysis.J. Microsc. 110, 103–6.PubMedGoogle Scholar
  41. HALL, T. A. (1979) Biological X-ray microanalysis.J. Microsc. 117, 145–63.PubMedGoogle Scholar
  42. HALL, T. A., ANDERSON, H. C. & APPLETON, T. (1973) The use of thin specimens for X-ray microanalysis in biology.J. Microsc. 99, 177–82.Google Scholar
  43. HALL, T. A. & PUPTA, B. L. (1974) Beam-induced loss of organic mass under electron-microprobe conditions.J. Microsc. 100, 177–88.PubMedGoogle Scholar
  44. HALL, T. A. & PETERS, P. D. (1974) Quantitative analysis of thin sections, and the choice of standards. InMicroprobe Analysis as applied to Cells and Tissues (edited by HALL, T., ECHLIN, P. and KAUFMANN, R.), pp. 229–237. London, New York: Academic Press.Google Scholar
  45. HARADA, Y., TOMITA, T., WATABE, H. & ETOH, T. (1979) Reduction of contamination in analytical electron microscopy.Scan. Electron Microsc. 2, 103–10.Google Scholar
  46. HARVEY, D. M. R. (1982) Freeze-substitution.J. Microsc. 127, 209–21.PubMedGoogle Scholar
  47. HARVEY, D. M. R. & KENT B. (1981) Sodium localization inSuaeda maritima leaf cells using zinc uranyl acetate precipitation.J. Microsc. 121, 179–83.Google Scholar
  48. HERBST, R. & HODER, D. (1978) Cathodoluminescence in biological studies.Scanning 1, 35–41.Google Scholar
  49. HODGES, G. M. & MUIR, M. D. (1975) Quantitative evaluation of autoradiographs by X-ray spectroscopy.J. Microsc. 104, 173–78.PubMedGoogle Scholar
  50. HODSON, S. & MARSHALL, J. (1971) Migration of potassium out of electron-microscope specimens.J. Microsc. 93 49–53.PubMedGoogle Scholar
  51. HÖHLING, H. J. & NICHOLSON, W. A. P. (1975) Electron microprobe analysis in hard tissue research: specimen preparation.J. Microsc. Biol. Cell 22, 185–92.Google Scholar
  52. HOLM, R. & REINFANDT, B. (1978) Auger microanalysis in a conventional scanning electron microscope.Scanning 1, 42–57.Google Scholar
  53. HOUGH, P. V. C., MCKINNEY, W. R., LEDBETTER, M. C., POLLACK, R. E., & MOOS, H. W. (1976) Identification of biological molecules in situ at high resolution via the fluorescence excited by a scanning electron beam.Proc. natn. Acad. Sci., U.S.A. 73, 317–21.Google Scholar
  54. HOYER, L. C., LEE, J. C. & BUCANA, C. (1979) Scanning immunoelectron microscopy for the identification and mapping of two or more antigens on cell surfaces.Scan. Electron Microsc. 3, 629–36.PubMedGoogle Scholar
  55. HUTCHINSON, T. E. & BOREK, J. R. (1979) Experimental determination of detection limits and calibration constants for energy-dispersive X-ray analysis using thin film frozen-hydrated solutions.Ultramicroscopy 4, 233–9.CrossRefGoogle Scholar
  56. HUTCHINSON, T. E., JOHNSON, D. E., & MACKENZIE, A. P. (1978) Instrumentation for direct observation of frozen-hydrated specimens in the electron microscope.Ultramicroscopy 3, 315–24.CrossRefPubMedGoogle Scholar
  57. INGRAM, F. D. & INGRAM, M. J. (1980) Freeze-dried, plastic-embeded tissue preparation: a review.Scan. Electron Microsc. 4, 147–60.PubMedGoogle Scholar
  58. KOTRBA, Z. (1979) The influence of conductive coatings on the accuracy of X-ray microanalysis.Microsc. Acta 82, 59–68.Google Scholar
  59. LANDIS, W. J. (1979) Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.Scan. Electron Microsc. 2, 555–70.PubMedGoogle Scholar
  60. Landis, W. J. &Glimcher, M. J. (1978) Electron diffraction and electron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques.J. Ultrastruct. Res. 63, 188–223.CrossRefPubMedGoogle Scholar
  61. Läuchli, A., Stelzer, R., Guggenheim, R. &Henning, L. (1974) Precipitation techniques as a means for intracellular ion localisation by use of electron probe analysis. InMicroprobe Analysis as applied to Cells and Tissues (edited byHall, T., Echlin, P. andKaufmann, R.), pp. 107–118. London, New York: Academic Press.Google Scholar
  62. Lechene, C. P., Bronner, C. &Kirk, R. G. (1977) Electron probe microanalysis of chemical elemental content of single human red cells.J. Cell Physiol. 90 117–26.CrossRefPubMedGoogle Scholar
  63. Lechene, C. P. &Warner, R. R. (1977) Ultramicroanalysis: X-ray spectrometry by electron probe excitation.Ann. Rev. Biophys. Bioeng. 6, 57–85.CrossRefGoogle Scholar
  64. Lever, J. D., Santer, R. M., Lu, K. S. &Presley, R. (1977) Electron probe X-ray microanalysis of small granulated cells in rat sympathetic ganglia after sequential aldehyde and dichromate treatment.J. Histochem. Cytochem. 25, 275–9.PubMedGoogle Scholar
  65. Lifshin, E., Ciccarelli, M. F. &Bolon, R. B. (1975) X-ray spectral measurement and interpretation. InPractical Scanning Electron Microscopy (edited byGoldstein, J. I. andYakowitz, H.), pp. 263–297. New York, London: Plenum Press.Google Scholar
  66. Love, G., Scott, V. D., Dennis, N. M. T. &Laurenson, L. (1981) Sources of contamination in electron optical equipment.Scanning 4, 32–9.Google Scholar
  67. McGowan, J. W. &Malachowski, M. J. (1980) Soft X-ray replication of biological material — X-ray microscopy and microchemical analysis of cells.Ann. N.Y. Acad. Sci. 342, 288–303.PubMedGoogle Scholar
  68. MacKnight, A. D. C. (1980) Comparison of analytic techniques: chemical, isotopic and microprobe analyses.Fed. Proc. 39, 2881–7.PubMedGoogle Scholar
  69. Marshall, A. T. (1977) Electron probe X-ray microanalysis of frozen-hydrated biological specimens.Microsc. Acta 79, 254–66.PubMedGoogle Scholar
  70. Marshall, A. T. (1980a) Principles and instrumentation. InX-ray Microanalysis in Biology (edited byHayat, M. A.), pp. 1–64. Baltimore: University Park Press.Google Scholar
  71. Marshall, A. T. (1980b) Freeze-substitution as a preparation technique for biological X-ray microanalysis.Scan. Electron Microsc. 2, 395–408.Google Scholar
  72. Marshall, A. T. (1980c) Quantitative X-ray microanalysis of frozen-hydrated bulk biological specimens.Scan. Electron Microsc. 2, 335–48.Google Scholar
  73. Martin, B. W. (1980) A microprobe based on particle-induced X-ray emission (PIXE) — a powerful tool for microanalysis in minerals and cells.Scan. Electron Microsc. 1, 419–38.Google Scholar
  74. Martoja, R., Szöllösi, A. &Truchet, M. (1975) Microanalyse et cytochimie.J. Microsc. Biol. Cell 22, 247–60.Google Scholar
  75. Meisner, L. F., Chuprevich, T. W., Inhorn, S. L., Indriksons, A. &Peterson, G. G. (1973) Microanalysis of chromosomes with X-ray energy dispersion.Lancet 2, 561.CrossRefGoogle Scholar
  76. Mitchell, N., Shepard, N. &Harrod, J. (1980) The use of brominated toluidine blue 0 in X-ray microanalysis of proteoglycan.Histochemistry 68, 245–51.CrossRefPubMedGoogle Scholar
  77. Moreton, R. B. (1981) Electron-probe X-ray microanalysis: techniques and recent applications in biology.Biol. Rev. 56, 409–61.PubMedGoogle Scholar
  78. Morgan, A. J. (1979) Non-freezing techniques of preparing biological specimens for electron microprobe X-ray microanalysis.Scan. Electron Microsc. 2, 635–48.PubMedGoogle Scholar
  79. Morgan, A. J. (1980) Preparation of specimens. Changes in chemical integrity. InX-ray Microanalysis in Biology (edited byHayat, M. A.), pp. 65–165. Baltimore: University Park Press.Google Scholar
  80. Morgan, A. J., Davies, T. W. &Erasmus, D. A. (1975a) Analysis of droplets from iso-atomic solutions as a means of calibrating a transmission electron analytical microscope (TEAM).J. Microsc. 104, 271–80.Google Scholar
  81. Morgan, A. J., Davies, T. W. &Erasmus, D. A. (1975b) Changes in the concentration and distribution of elements during electron microscope preparative procedures.Micron 6, 11–23.Google Scholar
  82. Nasir, M. J. (1976) X-ray analysis without the need for standards.J. Microsc. 108, 79–87.Google Scholar
  83. Neumann, B., Reimer, L. &Wellmanns, B. (1978) A permanent magnet system for electron deflection in front of an energy dispersive X-ray spectrometer.Scanning 1, 130–1.Google Scholar
  84. Nicholson, W. A. P. &Hall, T. A. (1973) X-ray fluorescence microanalysis of thin biological specimens.J. Physics, E: Sci. Instr. 6, 781–4.Google Scholar
  85. Ottensmeyer, F. P. (1982) Scattered electrons in microscopy and microanalysis.Science 215, 461–6.PubMedGoogle Scholar
  86. Pallaghy, C. K. (1973) Electron probe microanalysis of potassium and chloride in freeze-substituted leaf sections ofZea mays.Aust. J. biol. Sci. 25, 1015–34.Google Scholar
  87. Panessa, B. J. (1979) Use of beryllium and graphite-polymer subtrates to reduce spurious X-ray signal. InMicrobeam Analysis in Biology (edited byLechene, C. P. andWarner, R. R.), pp. 591–613. New York, Academic Press.Google Scholar
  88. Quinton, P. M. (1978) Ultramicroanalysis of biological fluids with energy dispersive X-ray spectrometry.Micron 9, 57–69.Google Scholar
  89. Quinton, P. M. (1979) Energy dispersive X-ray analysis of biological microdroplets. InMicrobeam Analysis in Biology (edited byLechene, C. P. andWarner, R. R.), pp. 327–345. New York, London: Academic Press.Google Scholar
  90. Reed, S. J. B. (1975)Electron Microprobe Analysis. Cambridge: Cambridge University Press.Google Scholar
  91. Robison, W. L. (1973) Applications of the electron microprobe to the analysis of biological materials. InMicroprobe Analysis (edited byAndersen, C. A.), 271–321. New York: Wiley.Google Scholar
  92. Roomans, G. M. (1979a) Standards for X-ray microanalysis of biological specimens.Scan. Electron Microsc. 2, 649–57.Google Scholar
  93. Roomans, G. M. (1979b) Quantitative X-ray microanalysis of halogen elements in biological specimens.Histochemistry 65, 49–58.CrossRefPubMedGoogle Scholar
  94. Roomans, G. M. (1980) Problems in quantitative X-ray microanalysis of biological specimens.Scan. Electron Microsc. 2, 309–20.Google Scholar
  95. Roomans, G. M. &Kuypers, G. A. J. (1980) Background determination in X-ray microanalysis of biological thin sections.Ultramicroscopy 5, 81–3.CrossRefPubMedGoogle Scholar
  96. Roomans, G. M. &Van Gaal, H. L. M. (1977) Organometallic and organometalloid compounds as standards for microprobe analysis of epoxy resin embedded tissue.J. Miscrosc. 109, 235–40.Google Scholar
  97. Rosenquist, T. H. (1977) Atomic absorption spectrophotometry in quantitative histochemistry.Histochem. J. 9, 127–39.CrossRefPubMedGoogle Scholar
  98. Ross, A., Sumner, A. T. &Ross, A. R. (1981) Preparation and assessment of frozen-hydrated sections of mammalian tissue using commercially available equipment.J. Microsc. 121, 261–72.PubMedGoogle Scholar
  99. Russ, J. C. (1974) X-ray microanalysis in the biological sciences.J. submicrosc. Cytol. 6, 55–79.Google Scholar
  100. Russ, J. C. (1978) Electron probe X-ray microanalysis — principles. InElectron Probe Micronalysis in Biology (edited byErasmus, D. A.), pp. 5–36. London: Chapman & Hall.Google Scholar
  101. Salpeter, M. M. &Bachmann, L. (1972) Autoradiography. InPrinciples and Techniques of Electron Microscopy (edited byHayat, M.), Vol. 2, pp. 219–278. New York: Van Nostrand Reinhold.Google Scholar
  102. Schmidt, P. F., Fromme, H. G. &Pfefferkorn, G. (1980) LAMMA — investigations of biological and medical specimens.Scan. Electron Microsc. 2, 623–34.Google Scholar
  103. Seveus, L. (1980) Cryoultramicrotomy as a preparation method for X-ray microanalysis.Scan. Electron Microsc. 4, 161–70.PubMedGoogle Scholar
  104. Shuman, H. &Somlyo, A. P. (1976) Electron probe X-ray analysis of single ferritin molecules.Proc. natn. Acad. Sci., U.S.A. 73, 1193–5.Google Scholar
  105. Shuman, H., Somlyo, A. V. &Somlyo, A. P. (1976) Quantitative electron probe microanalysis of biological thin sections: methods and validity.Ultramicroscopy 1, 317–39.PubMedGoogle Scholar
  106. Sims, R. T. &Marshall, D. J. (1966) Location of nucleic acids by electron probe X-ray microanalysis.Nature, Lond,212, 1359.Google Scholar
  107. Simson, J. A. V., Bank, H. L. &Spicer, S. S. (1979) X-ray microanalysis of pyroantimonate-precipitable cations.Scan. Electron Microsc. 2, 779–92.PubMedGoogle Scholar
  108. Sjöström, M. (1980) The skeletal muscle. InX-ray Microanalysis in Biology (edited byHayat, M. A.), pp. 263–306. Baltimore: University Park Press.Google Scholar
  109. Skaer, H. (1982) Chemical cryoprotection for structural studies.J. Microsc. 125, 137–47.Google Scholar
  110. Skaer, H. Le B., Franks, F., Asquith, M. H. &Echlin, P. (1977) Polymeric cryoprotectants in the preservation of biological ultrastructure. III. Morphological aspects.J. Microsc. 110, 257–70.PubMedGoogle Scholar
  111. Somlyo, A. P., Somlyo, A. V., Shuman, H. &Stewart, M. (1979) Electron probe analysis of muscle and X-ray mapping of biological specimens with a field emission gun.Scan. Electron Microsc. 2, 711–22.PubMedGoogle Scholar
  112. Spurr, A. R. (1974) Macrocyclic polyether complexes with alkali elements in epoxy resin as standards for X-ray analysis of biological tissues. InMicroprobe Analysis as applied to Cells and Tissues (edited byHall, T., Echlin, P. andKaufmann, R.), pp. 213–227. London, New York: Academic Press.Google Scholar
  113. Spurr, A. R. (1975) Choice and preparation of standards for X-ray microanalysis of biological materials with special reference to macrocyclic polyether complexes.J. Microsc. Biol. Cell 22, 287–302.Google Scholar
  114. Spurr, A. R. (1980) Applications of SIMS in biology and medicine.Scanning 3, 97–109.Google Scholar
  115. Statham, P. J. (1979) Measurement and use of peak-to-background ratios in X-ray analysis.Mikrochim. Acta Suppl. 8, 229–42.Google Scholar
  116. Statham, P. J. (1981) X-ray microanalysis with Si(Li) detectors.J. Microsc. 123, 1–23.Google Scholar
  117. Statham, P. J. &Jones, M. (1980) Elemental mapping using digital storage and colour display.Scanning 3, 168–71.Google Scholar
  118. Statham, P. J. &Pawley, J. B. (1978) A new method for particle X-ray microanalysis based on peak to background measurements.Scan. Electron Microsc. 1, 469–78.Google Scholar
  119. Stenn, K. &Bahr, G. F. (1970) Specimen damage caused by the beam of the transmission electron microscope, a correlative reconsideration.J. Ultrastruct. Res. 31, 526–50.CrossRefPubMedGoogle Scholar
  120. Sumner, A. T. (1978a) Changes in elemental composition of human chromosomes during a G-banding (ASG) and a C-banding (BSG) procedure.Histochem. J. 10, 201–11.CrossRefPubMedGoogle Scholar
  121. Sumner, A. T. (1978b) Quantitation in biological X-ray microanalysis with particular reference to histochemistry.J. Microsc. 114 19–30.PubMedGoogle Scholar
  122. Sumner, A. T. (1981) The distribution of quinacrine on chromosomes as determined by X-ray microanalysis. I. Q-bands on CHO chromosomes.Chromosoma 82, 717–34.CrossRefPubMedGoogle Scholar
  123. Sumner, A. T. (1982a) Some observations on the mechanisms of blocking of nuclear staining by cisplatin.Histochem. J. 14, 283–99.CrossRefPubMedGoogle Scholar
  124. Sumner, A. T. (1982b) Application of X-ray microanalysis to the study of histochemical staining reactions.Scan. Electron Microsc. 1, 261–8.Google Scholar
  125. Swift, J. A. (1979) Minimum depth electron probe X-ray microanalysis as a means for determining the sulphur content of the human hair surface.Scanning 2, 83–8.Google Scholar
  126. Tandler, C. J., Libanati, C. M. &Sanchis, C. A. (1970) The intracellular localisation of inorganic cations with potassium pyroantimonate.J. Cell Biol. 45, 355–66.CrossRefPubMedGoogle Scholar
  127. Tandler, C. J. &Solari, A. J. (1969) Nucleolar orthophosphate ions. Electron microscope and diffraction studies.J. Cell Biol. 41, 91–108.CrossRefPubMedGoogle Scholar
  128. Vallyathan, N. V. &Brody, A. R. (1977) X-ray microanalysis as an adjunct tool in enzyme histochemistry.Scan. Electron Microsc. 2, 93–102.Google Scholar
  129. Van Steveninck, M. E. &Van Steveninck, R. F. M. (1981) An X-ray microanalytical examination of precipitation methods for the ultrastructural localisation of potassium in plant tissue. II. Tetraphenyl boron.J. Microsc. 123, 51–60.Google Scholar
  130. Van Steveninck, M. E., Van Steveninck, R. F. M. &Mittelheuser, C. J. (1981) An X-ray microanalytical examination of precipitation methods for the ultrastructural localisation of potassium in plant tissue. I. Cobaltinitrite.J. Microsc. 122, 259–74.Google Scholar
  131. Van Steveninck, R. F. M., Van Steveninck, M. E., Hall, T. A. &Peters, P. D. (1974) A chlorine-free embedding medium for use in X-ray analytical electron microscope localisation of chloride in biological tissues.Histochemistry 38, 173–80.CrossRefPubMedGoogle Scholar
  132. Van Zyl, J., Forrest, Q. G., Hocking, C. &Pallaghy, C. K. (1976) Freeze-substitution of plant and animal tissue for the localisation of water-soluble compounds by electron probe microanalysis.Micron 7, 213–24.Google Scholar
  133. Walker, J. L. &Brown, H. M. (1977) Intracellular ionic activity measurements in nerve and muscle.Physiol. Rev. 57, 729–78.PubMedGoogle Scholar
  134. Wilson, A. J. &Robards, A. W. (1982) Some experiences in the use of a polymeric cryoprotectant in the freezing of plant tissue.J. Microsc. 125, 287–98.Google Scholar
  135. Wood, J. G. (1975) Use of the analytical electron microscope (AEM) in cytochemical studies of the central nervous system.Histochemistry 41, 233–40.CrossRefPubMedGoogle Scholar
  136. Yarom, R., Peters, P. D. &Hall, T. A. (1974) Effect of glutaraldehyde and urea embedding on intracellular ionic elements. X-ray microanalysis of skeletal muscle and myocardium.J. Ultrastruct. Res. 49, 405–18.CrossRefPubMedGoogle Scholar
  137. Zettner, A. (1964) Principles and applications of atomic absorption spectroscopy.Adv. Clin. Chem. 7, 1–62.Google Scholar
  138. Zs-Nagy, I., Pieri, C., Guili, C., Bertoni-Freddari, C. &Zs-Nagy, V. (1977) Energy dispersive X-ray microanalysis of the electrolytes in biological bulk specimen. I. Specimen preparation, beam penetration, and quantitative analysis.J. Ultrastruct. Res. 58, 22–33.CrossRefPubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • A. T. Sumner
    • 1
  1. 1.MRC Clinical and Population Cytogenetics UnitWestern General HospitalEdinburghScotland

Personalised recommendations