, Volume 45, Issue 9, pp 828–838 | Cite as

Genetic and developmental defects of the mouse corpus callosum

  • D. Wahlsten
Multi-author Review


Among adult BALB mice fewer than 20% usually have a small or absent corpus callosum (CC) and inheritance is polygenic. In the fetus at the time when the CC normally forms, however, almost all BALB mice show a distinct bulge in the interhemispheric fissure and grossly retarded commissure formation, and inheritance appears to result from two autosomal loci, provided the overall maturity of fetuses is equated. Most fetuses recover from the early defect when the CC axons manage to cross over the hippocampal commissure, and thus there is developmental compensation for a genetic defect rather than arrested midline development. The pattern of interhemispheric connections when the adult CC is very small is topographically normal in most respects, despite the unusual paths of the axons. The proportion of mice which fail to recover completely can be doubled by certain features of the maternal environment, and the severity of defects in adults can also be exacerbated by new genetic mutations which create new BALB substrains. The behavioral consequences of absent CC in mice are not known, nor have electrophysiological patterns been examined. The mouse provides an important model for prenatal ontogeny and cortical organization in human CC agenesis, because these data are not readily available for the human condition.

Key words

Recombinant inbred strain hippocampal commissure fetus axon guidance brain development incomplete penetrance spontaneous mutation animal model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailey, D. W., Substrains of the BALB/c strain, in: Handbook on Genetically Standardized JAX Mice, p. 2.5. Eds H.-J. Heiniger and J. J. Dorey. Jackson Laboratory, Bar Harbor, Maine 1980.Google Scholar
  2. 2.
    Bailey, D. W., Recombinant inbred strains and bilineal congenic strains, in: The Mouse in Biomedical Research, vol. 1, pp. 223–229. Eds H. L. Foster, J. D. Small and J. G. Fox. Academic Press, New York 1981.Google Scholar
  3. 3.
    Berrebi, A. S., Fitch, R. H., Ralphe, D. L., Denenberg, J. O., Friedrick, V. L. Jr, and Denenberg, V. H., Corpus callosum: regionspecific effects of sex, early experience and age. Brain Res.438 (1988) 216–224.Google Scholar
  4. 4.
    Bulman-Fleming, B., and Wahlsten, D., Effects of a hybrid maternal environment on brain growth and corpus callosum defects of inbred BALB/c mice: A study using ovarian grafting. Exp. Neurol.99 (1988) 636–646.Google Scholar
  5. 5.
    Bulman-Felming, B., and Wahlsten, D., Severity of corpus callosum defects in two substrains of BALB/cWah mice in relation to uterine location of fetuses. Soc. Neurosci. Abstr.14 (1988) 827.Google Scholar
  6. 6.
    Cassells, S. B., Hereditary influences on the morphology of anterior commissure and columns of fornix inMus musculus. Ph.D. dissertation, University of Waterloo 1988.Google Scholar
  7. 7.
    Cassells, B., Wainwright, P., and Blom, K., Heredity and alcohol-induced brain anomalies: Effects of alcohol on anomalous prenatal development of the corpus callosum and anterior commissure in BALB/c and C57BL/6 mice. Exp. Neurol.95 (1987) 587–604.Google Scholar
  8. 8.
    Dehay, C., Kennedy, H., Bullier, J., and Berland, M., Absence of interhemispheric connections of area 17 during development in the monkey. Nature331 (1988) 348–350.Google Scholar
  9. 9.
    Dennis, M., Language in a congenitally acallosal brain. Brain Lang.12 (1981) 33–53.Google Scholar
  10. 10.
    Easter, S. S. Jr, Purves, D., Rakic, P., and Spitzer, N. C., The changing view of neural specificity. Science230 (1985) 507–511.Google Scholar
  11. 11.
    Edelman, G. M., Neural Darwinism. Basic Books, New York 1987.Google Scholar
  12. 12.
    Elberger, A. J., The functional role of the corpus callosum in the developing visual system: a review. Progr. Neurobiol.18 (1982) 15–79.Google Scholar
  13. 13.
    Elberger, A. J., The existence of a separate, brief critical period for the corpus callosum to affect visual development. Behav. Brain Res.11 (1984) 223–231.Google Scholar
  14. 14.
    Elberger, A. J., Visual function alterations resulting from neonatal corpus callosum section are linked to primary visual cortex. Soc. Neurosci. Abstr.14 (1988) 1112.Google Scholar
  15. 15.
    Elberger, A. J., and Smith, E. L. III The critical period for corpus callosum section to affect cortical binocularity. Exp. Brain Res.57 (1985) 213–223.Google Scholar
  16. 16.
    Elias, M. F., Dupree, M., and Eleftheriou, B. E., Differences in spatial discrimination reversal learning between two inbred mouse strains following specific amygdaloid lesions. J. comp. Physiol. Psychol.83 (1973) 149–156.Google Scholar
  17. 17.
    Endo, A., Goto, T., and Sakai, N., Distribution by sex of mouse fetuses in the intrauterine postion. Gamete Res.16 (1987) 79–82.Google Scholar
  18. 18.
    Festing, M. F. W., Genetic contamination of laboratory animal colonies; An increasingly serious problem. Int. Lab. Anim. Resource News25 (1982) 6–10.Google Scholar
  19. 19.
    Glas, P., Onderzoek naar de Vroege Ontwikkeling van de Commissuren in het mediane gebied van het Telencephalon bij de Witte Muis, pp. 68–75. Drukkerij van Denderen B. V., Groningen 1975.Google Scholar
  20. 20.
    Geoffroy, G., Lassonde, M., Delisle, F., and Décarie, M., Corpus callosotomy for control of intractable epilepsy in children. Neurology33 (1983) 891–897.Google Scholar
  21. 21.
    Grebogi, C., Ott, E., and Yorke, J. A., Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science238 (1987) 632–638.Google Scholar
  22. 22.
    Hankin, M. H., and Silver, J., Mechanisms of axonal guidance, in: Developmental Biology, vol. 2, pp. 565–604. Ed. L. W. Browder. Plenum, New York 1986.Google Scholar
  23. 23.
    Herrup, K., Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. Devl Brain Res.11 (1983) 267–274.Google Scholar
  24. 24.
    Innocenti, G. M., General organization of callosal connections in the cerebral cortex, in: Cerebral Cortex, vol. 5, pp. 291–353. Eds E. G. Jones and A. Peters. Plenum, New York 1986.Google Scholar
  25. 25.
    Inoue, Y., Mikoshiba, K., Yokoyama, M., Inoue, K., Terashima, T., Nomura, T., and Tsukada, Y., Alteration of the primary pattern of central myelin in a chimaeric environment — study of shiverer ↔ wild-type chimaeras. Devl Brain Res.26 (1986) 239–247.Google Scholar
  26. 26.
    Ivy, G. O., Akers, R. M., and Killackey, H. P., Differential distribution of callosal projection neurons in the neonatal and adult rat. Brain Res.173 (1979) 532–537.Google Scholar
  27. 27.
    Ivy, G. O., and Killackey, H. P., Anomalies of the corpus callosum in the mouse (BALB/cJ). Anat. Rec.199 (1981) 124.Google Scholar
  28. 28.
    Jeeves, M. A., and Silver, P. H., The formation of finger grip during prehension in an acallosal patient. Neuropsychologia26 (1988) 153–159.Google Scholar
  29. 29.
    Jeeves, M. A., and Temple, C. M., A further study of language function in callosal agenesis. Brain Lang.32 (1987) 325–335.Google Scholar
  30. 30.
    Jeret, J. S., Serur, D., Wisniewski, K. E., and Lubin, R. A., Clinicopathological findings associated with agenesis of the corpus callosum. Brain Devl.9 (1987) 255–264.Google Scholar
  31. 31.
    Johnson, J. I. Jr, Central nervous system of marsupials, in: The Biology of Marsupials, pp. 157–278. Ed. D. Hunsaker II. Academic Press, New York 1977.Google Scholar
  32. 32.
    Juraska, J. M., and Meyer, M., Environmental, but not sex, differences exist in the gross size of the rat corpus callosum. Soc. Neurosci. Abstr.11 (1985) 528.Google Scholar
  33. 33.
    Kahan, B., Auerbach, R., Alter, B. J., and Bach, F. H., Histocompatibility and isoenzyme differences in commercially supplied ‘BALB/c’ mice. Science217 (1982) 379–381.Google Scholar
  34. 34.
    Katz, M. J., Lasek, R. J., and Silver, J., Ontophyletics of the nervous system: Development of the corpus callosum and evolution of axon tracts, Proc. natl Acad. Sci. USA80 (1983) 5936–5940.Google Scholar
  35. 35.
    Keeler, C. E., Absence of the corpus callosum as a Mendelizing character in the house mouse. Proc. natl Acad. Sci. USA19 (1933) 609–611.Google Scholar
  36. 36.
    Keeler, C. E., Mouse News Letter No. 1 (1949) 3.Google Scholar
  37. 37.
    King, L. S., Hereditary defects of the corpus callosum in the mouse,Mus musculus. J. comp. Neurol.64 (1936) 337–363.Google Scholar
  38. 38.
    Koppel, H., and Innocenti, G. M., Is there a genuine exuberancy of callosal projections in development? A quantitative electron microscopic study in the cat. Neurosci. Lett.41 (1983) 33–40.Google Scholar
  39. 39.
    Kurnit, D. M., Layton, W. M., and Matthysse, S., Genetics, chance, and morphogenesis. Am. J. hum. Genet.41 (1987) 979–995.Google Scholar
  40. 40.
    Lai, M., and Lewis, P. D., Effects of undernutrition on myelination in rat corpus callosum. J. comp. Neurol.193 (1980) 973–982.Google Scholar
  41. 41.
    LaMantia, A.-S., and Rakic, P., The number, size, myelination, and regional variation of axons in the corpus callosum and anterior commissure of the developing rhesus monkey. Soc. Neurosci. Abstr.10 (1984) 1081.Google Scholar
  42. 42.
    Land, P. W., and Lund, R. D., Development of the rat's uncrossed retinotectal pathway and its relation to plasticity studies. Science205 (1979) 698–700.Google Scholar
  43. 43.
    Larbrisseau, A., Vanasse, M., Brochu, P., and Jasmin, G., The Andermann syndrome: agenesis of the corpus callosum associated with mental retardation and progressive sensorimotor neuronopathy. Can. J. neurol. Sci.11 (1984) 257–261.Google Scholar
  44. 44.
    Layton, W. M. Jr, Random determination of a developmental process. Reversal of normal visceral asymmetry in the mouse. J. Hered.67 (1976) 336–338.Google Scholar
  45. 45.
    Lent, R., Neuroanatomical effects of neonatal transection of the corpus callosum in hamsters. J. comp. Neurol.223 (1984) 548–555.Google Scholar
  46. 46.
    Loeser, J. D., and Alvord, E. C. Jr, Agenesis of the corpus callosum. Brain91 (1968) 553–570.Google Scholar
  47. 47.
    Looney, G. A., and Elberger, A. J., Myelination of the corpus callosum in the cat: Time course, topography, and functional implications. J. comp. Neurol.248 (1986) 336–347.Google Scholar
  48. 48.
    Métin, C., Godement, P., and Imbert, M., The primary visual cortex in the mosue: receptive field properties and functional organization. Exp. Brain Res.69 (1988) 594–612.Google Scholar
  49. 49.
    Milleret, C., and Buser, P., Réorganisation des connexions interhémisphériques calleuses chez le chat adulte: effets de l'occlusion monoculaire après chiasmotomie. C. r. Acad. Sci. Paris. Sér. III305 (1987) 325–330.Google Scholar
  50. 50.
    Milner, A. D., Jeeves, M. A., Silver, P. H., Lines, C. R., and Wilson, J., Reaction times to lateralised visual stimuli in callosal agenesis: stimulus and response factors. Neuropsychologia23 (1985) 323–331.Google Scholar
  51. 51.
    Mouse News Letter No. 77 (1987) 9.Google Scholar
  52. 52.
    Olavarria, J., Malach, R., and Van Sluyters, R. C., Development of visual callosal connections in neonatally enucleated rats. J. comp. Neurol.260 (1987) 321–348.Google Scholar
  53. 53.
    Olavarria, J., Serra-Oller, M. M., Yee, K. T., and Van Sluyters, R. C., Topography of interhemispheric connections in neocortex of mice with congenital deficiencies of the callosal commissure. J. comp. Neurol.270 (1988) 575–590.Google Scholar
  54. 54.
    O'Rahilly, R., Muller, F., Hutchins, G. M., and Moore, G. W., Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development. Am. J. Anat.171 (1984) 243–257.Google Scholar
  55. 55.
    Ossenkopp, K.-P., Macrae, L. K., and Teskey, G. C., Automated multivariate measurement of spontaneous motor activity in mice: Time coruse and reliabilities of the behavioural measures. Pharmac. Biochem. Behav.27 (1987) 565–568.Google Scholar
  56. 56.
    Ozaki, H. S., Murakami, T. H., Toyoshima, T., and Shimada, M., Agenesis of the corpus callosum in ddN strain mouse associated with unusual facial appearance (flat face). Neurosci. Res.1 (1984) 81–87.Google Scholar
  57. 57.
    Ozaki, H. S., Murakami, T. H., Toyoshima, T., and Shimada, M., The fibers which leave the Probst's longitudinal bundle seen in the brain of an acallosal mouse: a study with the horseradish peroxidase technique. Brain Res.400 (1987) 239–246.Google Scholar
  58. 58.
    Ozaki, H. S., and Shimada, M., The fibers which course within the Probst's longitudinal bundle seen in the brain of a congenitally acallosal mouse: a study with the horseradish peroxidase technique. Brain Res.441 (1988) 5–14.Google Scholar
  59. 59.
    Rakic, P., Organizing principles for development of primate cerebral cortex, in: Organizing Principles of Neural Development, pp. 21–48. Ed. S. C. Sharma, Plenum, New York 1984.Google Scholar
  60. 60.
    Rakic, P., and Yakovlev, P. I., Development of the corpus callosum and cavum septi in man. J. comp. Neurol.132 (1968) 45–72.Google Scholar
  61. 61.
    Rhoades, R. W., and DellaCroce, D. D., Neonatal enucleation induces an asymmetric pattern of visual callosal connections in hamsters. Brain Res.202 (1980) 189–195.Google Scholar
  62. 62.
    Roderick, T. H., Wimer, R. E., Wimer, C. C., and Schwartzkroin, P. A., Genetic and phenotypic variation in weight of brain and spinal cord between inbred strains of mice. Brain Res.64(1973) 345–353.Google Scholar
  63. 63.
    Roderick, T. H., Langley, S. H., and Leiter, E. H., Some unusual genetic characteristics of BALB/c and evidence for genetic variation among BALB/c substrains, in: The BALB/c Mouse. Genetics and Immunology, pp. 9–18. Ed. M. Potter. Springer-Verlag, Berlin 1985.Google Scholar
  64. 64.
    Schmidt, S. L., and Lent, R., Effects of prenatal irradiation on the development of cerebral cortex and corpus callosum of the mouse. J. comp. Neurol.264 (1987) 193–204.Google Scholar
  65. 65.
    Serur, D., Jeret, J. S., and Wisniewski, K., Agenesis of the corpus callosum: Clinical, neuroradiological and cytogenetic studies. Neuropediatrics19 (1988) 87–91.Google Scholar
  66. 66.
    Silver, J., Lorenz, S. E., Wahlsten, D., and Coughlin, J., Axonal guidance during development of the great cerebral commissures: Descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J. comp. Neurol.210 (1982) 10–29.Google Scholar
  67. 67.
    Sperry, R. W., Plasticity of neural maturation. Devl Biol. Suppl.2 (1968) 306–327.Google Scholar
  68. 68.
    Sperry, R., Some effects of disconnecting the cerebral hemispheres. Science217 (1982) 1223–1226.Google Scholar
  69. 69.
    Spudich, J. L., and Koshland, D. E. Jr, Non-genetic individuality: chance in the single cell. Nature262 (1976) 467–471.Google Scholar
  70. 70.
    Stanfield, B. B., Postanatal reorganization of cortical projections. The role of collateral elimination. Trends Neurosci.7 (1984) 37–41.Google Scholar
  71. 71.
    Sturrock, R. R., Myelination of the mouse corpus callosum. Neuropath. appl. Neurobiol.6 (1980) 415–420.Google Scholar
  72. 72.
    Taylor, B. A., Genetic relationships between inbred strains of mice. J. Hered.63 (1972) 83–86.Google Scholar
  73. 73.
    vom Saal, F. S., The intrauterine position phenomenon: Effects on physiology, aggressive behavior and population dynamics in house mice, in: Biological Perspectives on Aggression, pp. 135–179. Eds K. Flannelly, R. Blanchard and D. Blanchard. Alan R. Liss, New York 1984.Google Scholar
  74. 74.
    Wahlsten, D., Heritable aspects of anomalous myelinated fibre tracts in the forebrain of the laboratory mouse. Brain Res.68 (1974) 1–18.Google Scholar
  75. 75.
    Wahlsten, D., A developmental time scale for postnatal changes in brain and behavior of B6D2F2 mice. Brain Res.72 (1974) 251–264.Google Scholar
  76. 76.
    Wahlsten, D., Heredity and brain structure, in: Genetics, Environment and Intelligence, pp. 93–115. Ed. A. Oliverio Elsevier, Amsterdam 1977.Google Scholar
  77. 77.
    Wahlsten, D., Pre-natal schedule of apperance of mouse brain commissures. Devl Brain Res.1 (1981) 461–473.Google Scholar
  78. 78.
    Wahlsten, D., Deficiency of corpus callosum varies with strain and supplier of the mice. Brain Res.239 (1982) 329–347.Google Scholar
  79. 79.
    Wahlsten, D., Mode of inheritance of deficient corpus callosum in mice. J. Hered.73 (1982) 281–285.Google Scholar
  80. 80.
    Wahlsten, D., Mice in utero while their mother is lactating suffer higher frequency of deficient corpus callosum. Devl Brain Res.5 (1982) 354–357.Google Scholar
  81. 81.
    Wahlsten, D., Growth of the mouse corpus callosum. Devl Brain Res.15 (1984) 59–67.Google Scholar
  82. 82.
    Wahlsten, D., Defects of the fetal forebrain in mice with hereditary agenesis of the corpus callosum. J. comp. Neurol.262 (1987) 227–241.Google Scholar
  83. 83.
    Wahlsten, D., Three sources of individual differences. Can. Psychol.28(1987) No. 2a Abstr. 640.Google Scholar
  84. 84.
    Wahlsten, D., Deficiency of the corpus callosum: Incomplete penetrance and substrain differentiation in BALB/c mice. J. Neurogenet.5 (1989) 61–76.Google Scholar
  85. 85.
    Wahlsten, D., and Jones, G. B., Structural changes in brains of mice with agenesis of the corpus callosum. Soc. Neurosci. Abstr.9 (1983) 494.Google Scholar
  86. 86.
    Wahlsten, D., Lyons, J. P., and Zagaja, W., Shaker short-tail, a spontaneous neurological mutant in the mousue. J. Hered.74 (1983) 421–425.Google Scholar
  87. 87.
    Wahlsten, D., and Smith, G., Inheritance of retarded forebrain commissure development in fetal mice: Results from classical crosses and recombinant inbred strains. J. Hered.80 (1989) 11–16.Google Scholar
  88. 88.
    Wahlsten, D., and Wainwright, P., Application of a morphological time scale to hereditary differences in prenatal mouse development. J. Embryol. exp. Morph.42 (1977) 79–92.Google Scholar
  89. 89.
    Wainwright, P., and Fritz, G., Effect of moderate prenatal ethanol exposure on postnatal brain and behavioral development in BALB/c mice. Exp. Neurol.89 (1985) 237–249.Google Scholar
  90. 90.
    Wainwright, P., and Gagnon, M., Effects of fasting during gestation on brain development in BALB/c mice. Exp. Neurol.85 (1984) 223–228.Google Scholar
  91. 91.
    Ward, R., Genetic polymorphisms and additive genetic models. Behav. Genet.15 (1985) 537–548.Google Scholar
  92. 92.
    Ward, R., Tremblay, L., and Lassonde, M., The relationship between callosal variation and lateralization in mice is genotype-dependent. Brain Res.424 (1987) 84–88.Google Scholar
  93. 93.
    Wiggins, R. C., Myelination: a critical stage in development. Neurotoxicology7 (1986) 103–120.Google Scholar
  94. 94.
    Wimer, R. E., Mouse News Letter No. 33 (1965) 32.Google Scholar
  95. 95.
    Wise, S. P., and Jones, E. G., The organization and postnatal development of the commissural projection of the rat somatic sensory cortex. J. comp. Neurol.168 (1976) 313–344.Google Scholar
  96. 96.
    Wree, A., Angenendt, H.-W., and Zilles, K., The size of the zone of origin of callosal afferents projecting to the primary visual cortex contralateral to the remaining eye in rats monocularly enucleated at different postnatal ages. Anat. Embryol.174 (1986) 91–96.Google Scholar
  97. 97.
    Wyllie, E., Corpus callosotomy for intractable generalized epilepsy. J. Pediatr.113 (1988) 255–261.Google Scholar
  98. 98.
    Yorke, C. H., and Caviness, V. S., Jr, Interhemispheric neocortical connections of the corpus callosum in the normal mouse: A study based on anterograde and retrograde methods. J. comp. Neurol.164 (1975) 233–246.Google Scholar
  99. 99.
    Zaki, W., Le processus dégénératif au cours du développement du corps calleux. Arch. Anat. Microsc. Morphol. exp.74 (1985) 133–149.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1989

Authors and Affiliations

  • D. Wahlsten
    • 1
  1. 1.Department of PsychologyUniversity of AlbertaEdmontonCanada

Personalised recommendations