Experientia

, Volume 36, Issue 2, pp 243–244 | Cite as

Trimethoprim enhances the antibacterial activity of nalidixic and oxolinic acids and delays the emergence of resistance

  • A. Bertolini
  • M. Castelli
  • Susanna Genedani
  • M. Garuti
Specialia

Summary

Trimethoprim enhances the in vitro activity of nalidixic and oxolinic acids against some representative pathogenic microorganisms, including those which are most frequently responsible for urinary tract infections, and delays the emergence of resistance in many of them.

Keywords

Urinary Tract Tract Infection Antibacterial Activity Urinary Tract Infection Trimethoprim 

References

  1. 1.
    M. Buchbinder, J.C. Webb, L.V. Anderson and W.R. McCabe, Antimicrob. Agents Chemother.1962, 308 (1963).Google Scholar
  2. 2.
    J.T. Holland and J.Z. Montgomerie, New Zealand med. J.63, 498 (1964).Google Scholar
  3. 3.
    K.V. Parkkulainen and M. Jahkola, Nord. Med.74, 1231 (1965).Google Scholar
  4. 4.
    S.M. Finegold, L.G. Miller, D. Posnick, D.K. Patterson and A. Davis, Antimicrob. Agents Chemother.1966, 189 (1967).Google Scholar
  5. 5.
    E. Atlas, H. Clark, F. Silverblatt and M. Turck, Ann. int. Med.70, 713 (1969).Google Scholar
  6. 6.
    W.H. Deitz, J.H. Bailey and E.J. Froelich, Antimicrob. Agents Chemother.1963, 583 (1964).Google Scholar
  7. 7.
    R.P. Moungton and A. Koelman, Chemotherapia11, 10 (1966).Google Scholar
  8. 8.
    R. Auriti and L. Ravagnan, Antibiotica6, 72 (1968).Google Scholar
  9. 9.
    J.G. Baudens and Y.A. Chabbert, Path. Biol.17, 391 (1969).Google Scholar
  10. 10.
    J.D. Piquet, Ann. Inst. Pasteur116, 43 (1969).Google Scholar
  11. 11.
    J. Michel, R. Luboshitzky and T. Sacks, Antimicrob. Agents Chemother.4, 201 (1973).Google Scholar
  12. 12.
    E.F. Gale, E. Cundliffe, P.E. Reynolds, M.H. Richmond and M.J. Waring, The molecular basis of antibiotic action, p.36. John Wiley and Sons, London 1972.Google Scholar
  13. 13.
    W.A. Goss, W.H. Deitz and T.M. Cook, J. Bact.88, 1112 (1964).Google Scholar
  14. 14.
    W.A. Goss, W.H. Deitz and T.M. Cook, J. Bact.89, 1068 (1965).Google Scholar
  15. 15.
    R.G. Fenwick and R. Curtiss, J. Bact.116, 1236 (1973).Google Scholar
  16. 16.
    R.M. Weiner and M.A. Blackmann, J. Bact.116, 1398 (1973).Google Scholar
  17. 17.
    T.J. Simon, W.E. Masker and P.C. Hanavalt, Biochem. Biophys. Acta349/2, 271 (1974).Google Scholar
  18. 18.
    J.R.N. Bushby and G.H. Hitchings, Br. J. Pharmac. Chemother.33, 72 (1968).Google Scholar
  19. 19.
    G.H. Hitchings, Ann. N.Y. Acad. Sci.186, 444 (1971).Google Scholar
  20. 20.
    G.B. Elion, S. Singer and G.H. Hitchings J. biol. Chem.208, 477 (1954).Google Scholar
  21. 21.
    E.W. McChesney, E.J. Froelich, G.Y. Lesher, A.V.R. Crain and D. Rosi, Toxic. appl. Pharmac.6, 292 (1964).Google Scholar
  22. 22.
    S.M. Ringel, F.J. Turner, S. Roemer, J.M. Daly, R. Zlatanoff and B.S. Schwartz, Antimicrob. Agents Chemother.1967, 486 (1968).Google Scholar
  23. 23.
    D.E. Schwartz and J. Rieder, Chemotherapy15, 337 (1970).Google Scholar
  24. 24.
    K. Berneis and W. Boguth, Chemotherapy22, 390 (1976).Google Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • A. Bertolini
    • 1
  • M. Castelli
    • 1
  • Susanna Genedani
    • 1
  • M. Garuti
    • 1
  1. 1.Institute of PharmacologyUniversity of ModenaModena(Italy)

Personalised recommendations