, Volume 44, Issue 7, pp 586–593 | Cite as

Regulatory aspects of low intensity photon emission

  • R. Van Wijk
  • D. H. J. Schamhart
Multi-Author Review Biophoton Emission


Photon emission from unicellular and multicellular organisms has been a subject of study for many decennia. In contrast to the well-known phenomenon of bioluminescence originating in luciferin-luciferase reactions, low intensity emission in the visible region of the electromagnetic spectrum has been found in almost every species studied so far. At present, the nomenclature of this phenomenon has not crystallized and it is referred to by a variety of names, such as mitogenetic radiation29, dark luminescence7, low-level chemiluminescence20, 36, and biophotons57. Particular attention has been focussed on the relationship between photon emission and the regulation of various aspects of cellular metabolism, although in many cases quantitative data are still lacking. Throughout the history of this field of research the question of a functional biological role of the low intensity emission has been repeatedly raised; this is reflected, for instance, in the heterogeneity of the terms used to describe it. The discussion concerns the possible participation of photons of low intensity in intra- and intercellular communication. This paper reviews literature on the metabolic regulation of low intensity emission, as well as the regulation of photon emission initiated by external light. Furthermore, recent data are discussed with respect to a possible biocommunicative function of low intensity photon emission.

Key words

Regulatory aspects intracellular and intercellular communication metabolic regulation biological role cancer biophoton review 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adey, W. R., Tissue interactions with nonionizing electromagnetic fields. Physiol. Rev.61 (1981) 435–514.PubMedGoogle Scholar
  2. 2.
    Allen, R. C., and Loose, L. D., Phagocytic activation of a luminol-dependent chemiluminescence in rabbit alveolar and peritoneal macrophages. Biochem. biophys. Res. Commun.69 (1976) 245–252.CrossRefPubMedGoogle Scholar
  3. 3.
    Allen, R. C., Yevich, S. J., Orth, R. W., and Steele, R. H., The superoxide anion and singlet molecular oxygen: their role in the microbicidal activity of the polymorphonuclear leucocyte. Biochem. biophys. Res. Commun.60 (1974) 909–917.CrossRefPubMedGoogle Scholar
  4. 4.
    Ames, B. N., Cathcart, R., Schwiers, E., and Hochstein, P., Uric acid provides an antioxidant defense in humans against oxidant and radical-caused aging and cancer: A hypothesis. Proc. natl Acad. Sci. USA78 (1981) 6858–6862.PubMedGoogle Scholar
  5. 5.
    Artem'ey, V. V., Goldobin, A. S., and Gus'kov, L. N., Recording the optical emission of a nerve. Biophysics12 (1967) 1278–1280.Google Scholar
  6. 6.
    Badwey, J. A., and Karnovsky, M. L., Active oxygen species and the functions of phagocytic leucocytes. A. Rev. Biochem.49 (1980) 695–726.CrossRefGoogle Scholar
  7. 7.
    Barenboim, G. M., Domanskii, A. N., and Turoverov, K. K., Luminescence of Biopolymers and Cells. Plenum Press, New York/London 1969.Google Scholar
  8. 8.
    Barsacchi, R., Camici, P., Bottigli, U., Salvadori, P. A., Pelosi, G., Maiorino, M., and Ursini, F., Correlation between hydroperoxide-induced chemiluminescence of the heart and its function. Biochim. biophys. Acta762 (1983) 241–247.CrossRefPubMedGoogle Scholar
  9. 9.
    Blokha, V. V., Kossova, G. V., Sizov, A. D., Fedin, V. A., Kozlov, Yu. P., Kol's, O. R., and Tarusov, B. N., Detection of the ultraweak glow of muscles on stimulation. Biophysics13 (1968) 1084–1085.Google Scholar
  10. 10.
    Boveris, A., Chance, B., Filipkowski, M., Nakase, Y., and Paul, K. G., Enhancement of the chemiluminescence of perfused rat liver and of isolated mitochondria and microsomes by hydroperoxides, in: Frontiers of Biological Energetics, Electron to Tissues, vol. 2, pp. 975–984. Eds A. Scarpa, P. L. Duutton and J. S. Leigh, Jr. Academic Press, New York 1978.Google Scholar
  11. 11.
    Boveris, A., Cadenas, E., and Chance, B., Ultraweak chemiluminescence: a sensitive assay for oxidative radical reactions. Fed. Proc.40 (1981) 195–198.PubMedGoogle Scholar
  12. 12.
    Boveris, A., Cadenas, E., Reiter, R., Filipkowski, M., Nakase, Y., and Chance, B., Organ chemiluminescence: Noninvasive assay for oxidative radical reactions. Proc. natl Acad. Sci. USA77 (1980) 347–351.PubMedGoogle Scholar
  13. 13.
    Boveris, A., Sanchez, R. A., Varsavsky, A. I., and Cadenas, E., Spontaneous chemiluminescence of soybean seed. FEBS Lett.113 (1980) 29–32.CrossRefGoogle Scholar
  14. 14.
    Cadenas, E., Arad, I. D., Boveris, A., Fisher, A. B., and Chance, B., Partial spectral analysis of the hydroperoxide-induced chemiluminescence of the perfused lung. FEBS Lett.111 (1980) 413–418.CrossRefPubMedGoogle Scholar
  15. 15.
    Cadenas, E., Boveris, A., and Chance, B., Low-level chemiluminescence of bovine heart submitochondrial particles. Biochem. J.186 (1980) 659–667.PubMedGoogle Scholar
  16. 16.
    Cadenas, E., Boveris, A., and Chance, B., Hydroperoxide-dependent chemiluminescence of submitochondrial particles and its relationship to superoxide anion and other oxygen radicals, in: Developments in Biochemistry, vol. 11A, pp. 92–103. Eds J. V. Bannister and H. A. O. Hill. Elsevier, North Holland, New York 1980.Google Scholar
  17. 17.
    Cadenas, E., Daniele, R. P., and Chance, B., Low level chemiluminescence of alveolar macrophages. FEBS Lett.123 (1981) 225–228.CrossRefPubMedGoogle Scholar
  18. 18.
    Cadenas, E., and Sies, H., Low level chemiluminescence of liver microsomal fractions initiated by tert-butyl hydroperoxide. Relation to microsomal hemoproteins, oxygen dependence, and lipid peroxidation. Eur. J. Biochem.124 (1982) 349–356.PubMedGoogle Scholar
  19. 19.
    Cadenas, E., Varsavsky, A. I., Boveris, E., and Chance, B., Oxygenor organic hydroperoxide-induced chemiluminescence of brain and liver homogenates. Biochem. J.198 (1981) 645–654.PubMedGoogle Scholar
  20. 20.
    Cadenas, E., Wefers, H., and Sies, H., Low-level chemiluminescence of isolated hepatocytes. Eur. J. Biochem.119 (1981) 531–536.CrossRefPubMedGoogle Scholar
  21. 21.
    Cheng, B., Williams, M., and Chance, B., Effects of glucose, anoxia, and adriamycin on the chemiluminescence of Ehrlich ascites cells. FEBS Lett.160 (1983) 169–172.CrossRefPubMedGoogle Scholar
  22. 22.
    Chwirot, W. B., New indication of possible role of DNA in ultraweak photon emission from biological systems. Cytobios (1988) in press.Google Scholar
  23. 23.
    Chwirot, W. B., Dygala, R. S., and Chwirot, S., Quasi-monochromatic-light-induced photon emission from microsporocytes of larch shows oscillating decay behaviour predicted by the electromagnetic model of differentiation. Cytobios,47 (1986) 137–146.Google Scholar
  24. 24.
    Cilento, G., Electronic excitation in dark biological processes, in: Chemical and Biological Generation of Excited States, pp. 277–307. Eds W. Adam and G. Cilento. Academic Press, New York 1982.Google Scholar
  25. 25.
    Colli, L., Facchini, U., Guidotti, G., Dugnani Lonati, R., Arsenigo, M., and Sommariva, O., Further measurements on the bioluminescence of the seedlings. Experientia11 (1955) 479–481.Google Scholar
  26. 26.
    Dahlgren, C., Magnusson, K. E., Stendahl, O., and Sundquist, T., Modulation of polymorphonuclear leukocyte chemiluminescence response to the chemoattractant f-Met-Leu-Phe. Int. Archs Allergy appl. Immun.68 (1982) 79–83.Google Scholar
  27. 27.
    Galeotto, T., Bartoli, G. M., Bartoli, S., and Bertoli, E., Superoxide radicals and lipid peroxidation in tumor microsomal membranes, in: Developments in Biochemistry, vol. 11B, pp. 106–117. Eds W. H. Bannister and J. V. Bannister. Elsevier, North Holland, New York 1980.Google Scholar
  28. 28.
    Gorts, C. P. M., Effect of different carbon sources on the regulation of carbohydrate metabolism inSaccharomyces cerevisiae. Antonie van Leeuwenhoek, J. Microbiol. Serol.33 (1967) 451–463.Google Scholar
  29. 29.
    Gurwitsch, A. G., and Gurwitsch, L. D., Die Mitogenetische Strahlung. VEB Gustav Fischer Verlag, Jena 1959.Google Scholar
  30. 30.
    Halliwell, B., Production of superoxide, hydrogen peroxide and hydroxyl radicals by phagocytic cells: a cause of chronic inflammatory disease. Cell Biol. int. Rep.6 (1982) 529–542.CrossRefPubMedGoogle Scholar
  31. 31.
    Halliwell, B., and Gutteridge, J. M. C., Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J.219 (1984) 1–14.PubMedGoogle Scholar
  32. 32.
    Hamman, J. P., Gorby, D. R., and Seliger, H. H., A new type of biological chemiluminescence: The microsomal chemiluminescence of benzo-a-pyrene arises from the diol epoxide product of the 7,8-dihydrodiol. Biochem. biophys. Res. Commun.75 (1977) 793–798.CrossRefPubMedGoogle Scholar
  33. 33.
    Henkart, M., Light-induced changes in the structure of pigmented granules inAplysia neurons. Science188 (1975) 155–157.PubMedGoogle Scholar
  34. 34.
    Inaba, H., Yamagishi, A., Takyu, C., Yoda, B., Goto, Y., Miyazawa, T., Kaneda, T., and Saeki, A., Development of an ultra-high sensitive photon counting system and its application to biomedical measurements. Optics Lasers Engineering3 (1982) 125–130.CrossRefGoogle Scholar
  35. 35.
    Johston, R. B. Jr, Pabst, R. J., and Sasada, M., The release of superoxide anion by macrophages and its relationship to phagocytic microbicidal activity, in: Developments in Biochemistry, vol. 11B, pp. 211–221. Eds W. H. Bannister and J. V. Bannister. Elsevier, North Holland, New York 1980.Google Scholar
  36. 36.
    Kakinuma, K., Cadenas, E., Boveris, A., and Chance, B., Low level chemiluminescence of intact polymorphonuclear leukocytes. FEBS Lett.102 (1979) 38–42.CrossRefPubMedGoogle Scholar
  37. 37.
    Kochel, B., Grabikowski, E., and Slawinski, J., Analysis of photon counting series of low level luminescence from wheat leaves at high temperatures. Int. Symposium on Photon Emission From Biological Systems (IS-86), Wroclaw, Poland, in press.Google Scholar
  38. 38.
    Konev, S. V., Lyskova, T. I., and Nisenbaum, G. D., Very weak bioluminescence of cells in the ultraviolet region of the spectrum and its biological role. Biophysics11 (1966) 410–413.Google Scholar
  39. 39.
    Konig, H. L., Bioinformation-electrophysical aspects, in: Electromagnetic Bio-Information, pp. 25–54. Eds F. A. Popp, G. Becker, H. L. Konig and W. Peschka. Urban & Schwarzenberg, München 1979.Google Scholar
  40. 40.
    Li, K. H., and Popp, F. A., Non-exponential decay law of radiation systems with coherent light rescattering. Phys. Lett.93A (1983) 262–266.Google Scholar
  41. 41.
    Li, K. H., Popp, F. A., Nagl, W., and Klima, H., Indications of optical coherence in biological systems and its possible significance, in: Coherent Excitations in Biological Systems, pp. 117–122. Eds H. Fröhlich and F. Kremer. Springer-Verlag, Berlin/Heidelberg 1983.Google Scholar
  42. 42.
    Linnemans, W. A. M., Cell biological analysis of parasite-host cell interactions. I. Phagocytosis and endoparasitism, a review. Acta leidensia47 (1979) 1–21.PubMedGoogle Scholar
  43. 43.
    Lloyd, D., Boveris, A., Reiter, R., Filipkowski, M., Chance, B., Chemiluminescence ofAcanthamoeba castellanii. Biochem. J.184 (1979) 149–156.PubMedGoogle Scholar
  44. 44.
    Nagl, W., Chromatin organization and the control of gene activity. Int. Rev. Cytol.94 (1985) 21–56.PubMedGoogle Scholar
  45. 45.
    Nagl, W., and Popp, F. A., A physical (electromagnetic) model of differentiation. 1. Basic considerations. Cytobios37 (1983) 45–62.PubMedGoogle Scholar
  46. 46.
    Nakano, M., Noguchi, T., Sugioka, K., Fukuyama, H., Sato, M., Shimizu, Y., Tsuji, Y., and Inaba, H., Spectroscopic evidence for the generation of singlet oxygen in the reduced nicotinamide adenine dinucleotide phosphate-dependent microsomal lipid peroxidation system. J. biol. Chem.250 (1975) 2404–2406.PubMedGoogle Scholar
  47. 47.
    Ninnemann, H., Butler, W. L., and Epel, B. L., Inhibition of respiration in yeast by light. Biochim. biophys. Acta205 (1970) 499–506.PubMedGoogle Scholar
  48. 48.
    Oberley, L. W., and Buettner, G. R., Role of superoxide dismutase in cancer. A review. Cancer Res.39 (1979) 1141–1149.PubMedGoogle Scholar
  49. 49.
    Oura, E., The effect of aeration on the growth energetics and biochemical composition of baker's yeast. Thesis, Helsinki 1972.Google Scholar
  50. 50.
    Parks, P. J., Barna, B. P., Edinger, M. G., Deodhar, S. D., Monocyte interactions with solid substrates monitored by chemiluminescence. Biomat. Med. Dev., Art. Org.10 (1982) 41–53.Google Scholar
  51. 51.
    Parnham, M. J., Bittner, C., and Winkelmann, J., Macrophages from different sources, their production of chemiluminescence under various stimuli and the effects of PGE, and drugs. Agents Actions11 (1981) 617–619.PubMedGoogle Scholar
  52. 52.
    Perelygin, V. V., and Tarusov, B. N., Flash of very weak radiation on damage to living tissues. Biophysics11 (1966) 616–618.Google Scholar
  53. 53.
    Polakis, E. S., and Bartley, W., Changes in enzyme activities ofSaccharomyces cerevisiae during aerobic growth on different carbon sources. Biochem. J.97 (1965) 284–297.Google Scholar
  54. 54.
    Polakis, E. S., Bartley, W., and Meek, G. A., Changes in the structure and enzyme activity ofSaccharomyces cerevisiae in response to changes in the environment. Biochem. J.90 (1964) 369–374.PubMedGoogle Scholar
  55. 55.
    Popp, F. A., Li, K., and Nagl, W., A thermodynamic approach to the temperature response of biological systems as demonstrated by low level luminescence of cucumber seedlings. Z. Pflanzenphysiol.114 (1984) 1–13.Google Scholar
  56. 56.
    Popp, F. A., and Nagl, W., A physical (electromagnetic) model of differentiation. 2. Applications and examples. Cytobios37 (1983) 71–83.PubMedGoogle Scholar
  57. 57.
    Popp, F. A., Nagl, W., Li, K. H., Scholz, W., Weingartner, O., and Wolf, R., Biophoton emission. New evidence for coherence and DNA as source. Cell Biophys.6 (1984) 33–52.PubMedGoogle Scholar
  58. 58.
    Popp, F. A., Ruth, B., Bahr, R. W., Bohm, J., Grass, P., Grolig, G., Rattemeyer, M., Schmidt, H. G., and Wulle, P., Emission of visible and ultraviolet radiation by active biological systems. Coll. Phenomena3 (1981) 187–214.Google Scholar
  59. 59.
    Quickenden, T. I., and Que Hee, S. S., Weak luminescence from the yeastSaccharomyces cerevisiae and the existence of mitogenetic radiation. Biochem. biophys. Res. Commun.60 (1974) 764–770.CrossRefPubMedGoogle Scholar
  60. 60.
    Quickenden, T. I., and Que Hee, S. S., The spectral distribution of the luminescence emitted during growth of the yeastSaccharomyces cerevisae and its relationship to mitogenetic radiation. Photochem. Photobiol.23 (1976) 201–204.PubMedGoogle Scholar
  61. 61.
    Quickenden, T. I., and Tilbury, R. N., Growth dependent luminescence from cultures of normal and respiratory deficientSaccharomyces cerevisiae. Photochem. Photobiol.37 (1983) 337–344.PubMedGoogle Scholar
  62. 62.
    Rattemeyer, M., and Popp, F. A., Evidence of photon emission from DNA in living systems. Naturwissenschaften68 (1981) 572–573.CrossRefPubMedGoogle Scholar
  63. 63.
    Ruth, B., Experimental investigations on ultraweak photon emission, in: Electromagnetic Bio-Information, pp. 107–122. Eds F. A. Popp, G. Becker, H. L. Konig and W. Peschka. Urban & Schwarzenberg, München 1979.Google Scholar
  64. 64.
    Robinson, J. P., and Penny, R., Chemiluminescence in normal human phagocytes. II. Effect of paraproteins. J. clin. Lab. Immun.7 (1982) 219–221.Google Scholar
  65. 65.
    Schamhart, D. H. J., and Van Wijk, R., Photon emission and the degree of differentiation. Int. Symp. on Photon Emission From Biological Systems (IS-86), Wroclaw, Poland, in press.Google Scholar
  66. 66.
    Shlyakhtina, L. L., and Gurwitsch, A. A., Radiations from the mouse liver at normal temperatures and on cooling. Biophysics17 (1972) 1146–1150.Google Scholar
  67. 67.
    Shohet, S. B., Pitt, J., Baehner, R. L., and Poplack, D. G., Lipid peroxidation in the killing of phagocytized pneumococci. Infect. Immun.10 (1974) 1321–1328.PubMedGoogle Scholar
  68. 68.
    Shtrankfel'd, I. G., Klimensko, L. L., and Komarow, N. N., Very weak luminescence of muscles. Biophysics13 (1968) 1082–1084.Google Scholar
  69. 69.
    Slawinska, D., and Slawinski, J., Biological chemiluminescence. Photochem. Photobiol.37 (1983) 709–715.Google Scholar
  70. 70.
    Starkebaum, G., Stevens, D. L., Claude, H., and Gavin, S. E., Stimulation of human neutrofil chemiluminescence by soluble immune complexes and antibodies to neutrophils. J. Lab. clin. Med.98 (1981) 280–291.PubMedGoogle Scholar
  71. 71.
    Stauff, J., and Reske, G., Lumineszenz von Hefe. Naturwissenschaften51 (1964) 39.CrossRefGoogle Scholar
  72. 72.
    Sugioka, K., and Nakano, M., A possible mechanism of the generation of singlet molecular oxygen in NADP-dependent microsomal lipid peroxidation. Biochim. biophys. Acta423 (1976) 203–216.PubMedGoogle Scholar
  73. 73.
    Sung, S-S., A possible biophotochemical mechanism for cell communication, in: Electromagnetic Bio-Information, pp. 151–174. Eds F. A. Popp, G. Becker, H. L. Konig and W. Peschka. Urban & Schwarzenberg, München 1979.Google Scholar
  74. 74.
    Trush, M. A., Wilson, M. E., and Van Dyke, K., The generation of chemiluminescence (CL) by phagocytic cells. Meth. Enzymol.57 (1978) 462–494.Google Scholar
  75. 75.
    Van de Poll, K. W., Kerkenaar, A., and Schamhart, D. H. J., Isolation of a regulatory mutant of fructose-1,6-diphosphatase inSaccharomyces carlsbergensis. J. Bact.117 (1974) 965–970.PubMedGoogle Scholar
  76. 76.
    Van Rijn, J., and Van Wijk, R., Differential sensitivities of the two malate dehydrogenases and the maltose permease to the effect of glucose inSaccharomyces carlsbergensis. J. Bact.110 (1972) 477–484.PubMedGoogle Scholar
  77. 77.
    Van Wijk, R., Glucosidase synthesis, respiratory enzymes and catabolite repression in yeast. Proc. K. ned. Akad. Wet.C 71 (1968) 129–146.Google Scholar
  78. 78.
    Van Wijk, R., Regulation of DNA synthesis in cultured rat hepatoma cells. Int. Rev. Cytol.85 (1983) 63–107.PubMedGoogle Scholar
  79. 79.
    Williams, M. D., and Chance, B., Spontaneous chemiluminescence of human breath. J. biol. Chem.258 (1983) 3628–3631.PubMedGoogle Scholar
  80. 80.
    Wright, J. R., Rumbaugh, R. C., Colby, H. D., and Miles, P. R., The relationship between chemiluminescence and lipid peroxidation in rat hepatic microsomes. Archs Biochem. Biophys.192 (1979) 344–351.CrossRefGoogle Scholar
  81. 81.
    Yanai, M., and Quie, O., Chemiluminescence by polymorphonuclear leukocytes adhering to surfaces. Infect. Immun.32 (1981) 1181–1186.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1988

Authors and Affiliations

  • R. Van Wijk
    • 1
  • D. H. J. Schamhart
    • 1
  1. 1.Department of Molecular Cell BiologyUniversity of UtrechtUtrecht(The Netherlands)

Personalised recommendations