Adam, W., Biologisches Licht. Chemie in unserer Zeit7 (1973) 182–191.
Article
Google Scholar
Arecchi, F. T., Photocount distribution and field statistics, in: Quantum Optics, pp. 57–110. Ed. R. J. Glamber. Academic Press, New York/London 1969.
Google Scholar
Aschoff, J., Exogene und endogene Komponente der 24-Stunden-Periodik bei Tier und Mensch. Naturwissenschaften42 (1955) 569.
Article
Google Scholar
Birks, J. B., Excimers. Rep. Progr. Phys.38 (1975) 903–974.
Article
Google Scholar
Böhm, J., Untersuchung der ultraschwachen Photonenemission von Pflanzenkeimen unter dem Einfluß von Magnetfeldern und Temperaturveränderungen. Diplomarbeit (Experimentalphysik), Marburg 1980.
Braun, R., Der Lichtsinn augenloser Tiere. Umschau in Wissenschaft und Technik58 (1958) 306–309.
Google Scholar
Bünning, E., Die physiologische Uhr. Springer Verlag, Berlin, Göttingen, Heidelberg 1963.
Google Scholar
Bunge, M., and Kalnay, A. J., Solution to two paradoxes in the quantum theory of unstable systems. Nuovo Cim.77B (1983) 1–18.
Google Scholar
Clayton, R. K., Molecular Physics in Photosynthesis. Blacsdell Publ. Co., Waltham, Mass. 1965.
Google Scholar
Chwirot, W. B., Dygdala, R. S., and Chwirot, S., Optical coherence of white-light-induced photon from microsporocytes ofLarix europea. Cytobios44 (1985) 239–249.
Google Scholar
Chwirot, W. B., New indication of possible role of DNA in ultraweak photon emission from biological systems. J. Pl. Physiol.122 (1986) 81–86.
Google Scholar
Chwirot, W. B., Dygdala, R. S., and Chwirot, S., Quasi-monochromatic-light-induced photon emission from microsporocytes of larch shows oscillationing decay behavior predicted by the electromagnetic model of differentiation. Cytobios47 (1987) 137–146.
Google Scholar
Del Giudice, E., Doglia, S., Milani, M., and Vitiello, G., Collective properties of biological systems, in: Modern Bioelectrochemistry, pp. 263–287. Eds F. Gutmann and H. Keyzer. Plenum Publishing Corporation, 1986.
Dertinger, H., and Jung, H., Molekulare Strahlenbiologie. Springer-Verlag, Berlin, Göttingen, Heidelberg 1969.
Google Scholar
Engländer, S. W., Kallenbach, N. R., Heeger, A. J., Krumhansl, J. A., and Litwin, S., Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc. natl Acad. Sci. USA77 (1980) 7222–7226.
PubMed
Google Scholar
Fain, B., Instabilities in thermal baths. Phys. Rev.24A (1981) 2685–2693.
Google Scholar
Fonda, L., Ghirardi, G. C., and Rimini, A., Decay of unstable quantum systems. Rep. Progr. Phys.41 (1978) 587–631.
Article
Google Scholar
Gregory, R. L., Auge und Gehirn. Kindler-Verlag, München 1966.
Google Scholar
Harm, W., Reparatur von Ultraviolett-Schäden in der Erbsubstanz. Umschau in Wissenschaft und Technik70 (1970) 469–472.
Google Scholar
Harvey, E. N., Bioluminescence. Academic Press, Inc., New York 1952.
Google Scholar
Haupt, W., Die Phototaxis der Algen, in: Handbuch der Pflanzenphysiologie, vol. XVII/1, pp. 318–370. Ed. W. Ruhland. Springer-Verlag, Berlin, Göttingen, Heidelberg 1959.
Google Scholar
Haupt, W., Die Orientierung der Pflanzen zum Licht. Naturwiss. Rdsch.18 (1965) 261–267.
Google Scholar
Hoffmann, P., Photosynthese. Akademie-Verlag, Berlin 1975.
Google Scholar
Johnson, R. G., and Haynes, R. H., Evidence from photoreaction kinetics for multiple DNA photolyases in yeast (Saccharomyces cerevisiae). Photochem. Photobiol.43 (1986) 423–428.
PubMed
Google Scholar
Koga, K., Sato, T., and Ootaki, T., Negative phototropism in the piloboloid mutants ofPhycomyces blakeslecanus. Planta162 (1984) 97–103.
Article
Google Scholar
Li, K. H., Bioluminescence and stimulated coherent radiation. Laser Elektro-Optik3 (1981) 32–35.
Google Scholar
Li, K. H., and Popp, F. A., Non-exponential decay law of radiation systems with coherent rescattering. Phys. Lett.93A (1983) 262–266.
Google Scholar
Li, K. H., Popp, F. A., Nagl, W., and Klima, H., Indications of optical coherence in biological systems and its possible significance, in: Coherent Excitations in Biological Systems. Eds H. Fröhlich and F. Kremer. Springer-Verlag, Berlin, Heidelberg, New York 1983.
Google Scholar
Li, K. H., and Popp, F. A., Collective vibrations and coherent photon storage in DNA molecules; in preparation.
Lotmar, R., Die Ultraviolett-Strahlung und ihre biologisch-medizinische Bedeutung. Naturwiss. Rdsch.25 (1972) 89–99.
Google Scholar
Mandoli, D. F., and Briggs, W. R., Optical properties of etiolated plant tissues. Proc. natl Acad. Sci. USA79 (1982) 2902–2906.
Google Scholar
McElroy, W. D., Biolumineszenz-Chemie und biologische Bedeutung. Umschau in Wissenschaft und Technik69 (1969) 472–474.
Google Scholar
Metzner, H., Photosynthese-Umwandlung der Sonnenenergie. Umschau in Wissenschaft und Technik75 (1975) 435–441.
Google Scholar
Nagl, W., and Popp, F. A., A physical (electromagnetic) model of differentiation. Basic considerations. Cytobios37 (1983) 45–62.
PubMed
Google Scholar
Perina, J., Coherence of Light. Von Nostrand Reinhold Company, London, New York, Cincinnati, Toronto, Melbourne 1971.
Google Scholar
Polyak, S. L., The Retina. The Univ. of Chicago Press, Chicago 1941.
Google Scholar
Popp, F. A., Einige Möglichkeiten für Biosignale zur Steuerung des Zellwachstums. Arch. Geschwulstforsch.44 (1974) 295–301.
Google Scholar
Popp, F. A., Biophotonen. Ein neuer Weg zur Lösung des Krebsproblems. Verlag für Medizin, Dr. Ewald Fischer, Heidelberg 1976.
Google Scholar
Popp, F. A., and Ruth, B., Untersuchungen zur ultraschwachen Lumineszenz aus biologischen Systemen unter Berücksichtigung der Bedeutung für die Arzneimittelforschung. Arzneimittelforsch./Drug Res.27 (1977) 933–940.
Google Scholar
Popp, F. A., Photon-storage in biological systems, in: Electromagnetic Bio-Information, pp. 123–149. Eds F. A. Popp, G. Becker, H. L. König and W. Pescerka. Urban & Schwarzenberg, München, Baltimore 1979.
Google Scholar
Popp, F. A., Ruth, B., Bahr, W., Böhm, J., Groß, P., Grolig, G., Rattemeyer, M., Schmidt, H. G., and Wulle, P., Emission of visible and ultraviolet radiation by active biological systems. Coll. Phenomena3 (1981) 187–214.
Google Scholar
Popp, F. A., and Nagl, W., A physical (electromagnetic) model of differentiation. Applications and examples. Cytobios37 (1983) 71–84.
PubMed
Google Scholar
Popp, F. A., Elektromagnetische Ordnung des Zellgeschehens, in: Leitthemen: Information und Ordnung. Ed. G. Schaefer. Aulus-Verlag, Köln 1984.
Google Scholar
Popp, F. A., Biologie des Lichts. Paul Parey Verlag, Berlin, Hamburg 1984.
Google Scholar
Popp, F. A., Nagl, W., Li, K. H., Scholz, W., Weingärtner, O., and Wolf, R., Biophoton emission: New evidence for coherence and DNA as source. Cell Biophys.6 (1984) 33–52.
PubMed
Google Scholar
Popp, F. A., On the coherence of ultraweak photoemission from living tissues, in: Disequilibrium and Self-Organization, pp. 207–230. Ed. C. W. Kilmister. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo 1986.
Google Scholar
Popp, F. A., and Nagl, W., Towards an understanding of stacked base interactions: non-equilibrial phase transitions as a probable model. Polymer Bull.15 (1986) 89–91.
Article
Google Scholar
Precht, H., Christophersen, J., Hensel, H., and Larcher, W., Temperature and Life. Springer-Verlag, Berlin, Heidelberg, New York 1973.
Google Scholar
Rattemeyer, M., Popp, F. A., and Nagl, W., Evidence of photon emission from DNA in living systems. Naturwissenschaften68 (1981) 572–573.
Article
PubMed
Google Scholar
Seliger, H. H., Applications of bioluminescence and chemiluminescence, in: Chemiluminescence and Bioluminescence, pp. 461–478. Eds M. J. Cormier, D. M. Hercules and J. Lee. Plenum Press, New York 1973.
Google Scholar
Singh, K., and Nanda, K. K., Photoperiodic responds of the juvenile and the adult phases ofCallistemon viminalis. Indian J. For.7 (1985) 290–294.
Google Scholar
Slawinski, J., Grabikowski, E., and Ciesla, L., Spectral distribution of ultraweak luminescence from germinating plants. J. Luminesc.24/25 (1981) 791–794.
Article
Google Scholar
Slawinska, D., and Slawinski, J., Biological chemiluminescence. Photochem. Photobiol.37 (1983) 709–715.
Google Scholar
Slawinska, D., and Slawinski, J., Low-level luminescence from biological objects, in: Chemi- and Bioluminescence, pp. 495–531. Ed. J. G. Burr. Marcel Dekker, Inc., New York, Basel 1985.
Google Scholar
Slawinski, J., and Popp, F. A., Temperature hysteresis of low level luminescence from plants and its thermodynamical analysis. J. Pl. Physiol.130 (1987) 111–123.
Google Scholar
Smith, H., Light-piping by plant tissues. Nature298 (1982) 423–424.
Article
Google Scholar
Sweeney, B. M., Rhythmic Phenomena in Plants. Academic Press, Inc., New York 1969.
Google Scholar
Sweeney, B. M., The loss of the circadian rhythm in photosynthesis in an old strain ofGonyaulax polyedra. Pl. Physiol.80 (1986) 978–981.
Google Scholar
Thomas, J. B., Einführung in die Photobiologie. Georg Thieme Verlag, Stuttgart 1968.
Google Scholar
Twareque, S. A., Pertinence of the semi-group law in the theory of the decay of an unstable elementary particle. Nuovo Cim.25A (1975) 134–148.
Google Scholar
Van Wijk, R., and Schamhart, D., Regulator aspects of low intensity photon emission. Experientia44 (1988) 586–593.
PubMed
Google Scholar
Wolf, E., Spatial coherence of resonant modes in a maser interferometer. Phys. Lett.3 (1963) 166–168.
Article
Google Scholar
Zevenboom, W., and Mur, L. C., Growth and photosynthetic response of the cyanobacteriumMicrocystis aeruginosa in relation to photoperiodicity and irradiance. Archs Microbiol.139 (1984) 232–239.
Article
Google Scholar
Zhuravlev, A. I., Ultraweak luminescence in biology. Trans. Moscow Soc. Naturalists, vol. 39. Nauka, Moscow 1972 (Russian).
Google Scholar