Skip to main content

Physical aspects of biophotons

Summary

By comparing the theoretically expected results of photon emission from a chaotic (thermal) field and those of an ordered (fully coherent) field with the actual experimental data, one finds ample indications for the hypothesis that ‘biophotons’ originate from a coherent field occurring within living tissues. A direct proof may be seen in the hyperbolic relaxation dynamics of spectral delayed luminescence under ergodic conditions.

A possible mechanism has to be founded on Einstein's balance equation and, under stationary conditions, on energy conservation including a photochemical potential. It is shown that the considered equations deliver, besides the thermal equilibrium, a conditionally stable region far away from equilibrium, which can help to describe both ‘biophoton emission’ and biological regulation.

This is a preview of subscription content, access via your institution.

References

  1. Adam, W., Biologisches Licht. Chemie in unserer Zeit7 (1973) 182–191.

    Article  Google Scholar 

  2. Arecchi, F. T., Photocount distribution and field statistics, in: Quantum Optics, pp. 57–110. Ed. R. J. Glamber. Academic Press, New York/London 1969.

    Google Scholar 

  3. Aschoff, J., Exogene und endogene Komponente der 24-Stunden-Periodik bei Tier und Mensch. Naturwissenschaften42 (1955) 569.

    Article  Google Scholar 

  4. Birks, J. B., Excimers. Rep. Progr. Phys.38 (1975) 903–974.

    Article  Google Scholar 

  5. Böhm, J., Untersuchung der ultraschwachen Photonenemission von Pflanzenkeimen unter dem Einfluß von Magnetfeldern und Temperaturveränderungen. Diplomarbeit (Experimentalphysik), Marburg 1980.

  6. Braun, R., Der Lichtsinn augenloser Tiere. Umschau in Wissenschaft und Technik58 (1958) 306–309.

    Google Scholar 

  7. Bünning, E., Die physiologische Uhr. Springer Verlag, Berlin, Göttingen, Heidelberg 1963.

    Google Scholar 

  8. Bunge, M., and Kalnay, A. J., Solution to two paradoxes in the quantum theory of unstable systems. Nuovo Cim.77B (1983) 1–18.

    Google Scholar 

  9. Clayton, R. K., Molecular Physics in Photosynthesis. Blacsdell Publ. Co., Waltham, Mass. 1965.

    Google Scholar 

  10. Chwirot, W. B., Dygdala, R. S., and Chwirot, S., Optical coherence of white-light-induced photon from microsporocytes ofLarix europea. Cytobios44 (1985) 239–249.

    Google Scholar 

  11. Chwirot, W. B., New indication of possible role of DNA in ultraweak photon emission from biological systems. J. Pl. Physiol.122 (1986) 81–86.

    Google Scholar 

  12. Chwirot, W. B., Dygdala, R. S., and Chwirot, S., Quasi-monochromatic-light-induced photon emission from microsporocytes of larch shows oscillationing decay behavior predicted by the electromagnetic model of differentiation. Cytobios47 (1987) 137–146.

    Google Scholar 

  13. Del Giudice, E., Doglia, S., Milani, M., and Vitiello, G., Collective properties of biological systems, in: Modern Bioelectrochemistry, pp. 263–287. Eds F. Gutmann and H. Keyzer. Plenum Publishing Corporation, 1986.

  14. Dertinger, H., and Jung, H., Molekulare Strahlenbiologie. Springer-Verlag, Berlin, Göttingen, Heidelberg 1969.

    Google Scholar 

  15. Engländer, S. W., Kallenbach, N. R., Heeger, A. J., Krumhansl, J. A., and Litwin, S., Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc. natl Acad. Sci. USA77 (1980) 7222–7226.

    PubMed  Google Scholar 

  16. Fain, B., Instabilities in thermal baths. Phys. Rev.24A (1981) 2685–2693.

    Google Scholar 

  17. Fonda, L., Ghirardi, G. C., and Rimini, A., Decay of unstable quantum systems. Rep. Progr. Phys.41 (1978) 587–631.

    Article  Google Scholar 

  18. Gregory, R. L., Auge und Gehirn. Kindler-Verlag, München 1966.

    Google Scholar 

  19. Harm, W., Reparatur von Ultraviolett-Schäden in der Erbsubstanz. Umschau in Wissenschaft und Technik70 (1970) 469–472.

    Google Scholar 

  20. Harvey, E. N., Bioluminescence. Academic Press, Inc., New York 1952.

    Google Scholar 

  21. Haupt, W., Die Phototaxis der Algen, in: Handbuch der Pflanzenphysiologie, vol. XVII/1, pp. 318–370. Ed. W. Ruhland. Springer-Verlag, Berlin, Göttingen, Heidelberg 1959.

    Google Scholar 

  22. Haupt, W., Die Orientierung der Pflanzen zum Licht. Naturwiss. Rdsch.18 (1965) 261–267.

    Google Scholar 

  23. Hoffmann, P., Photosynthese. Akademie-Verlag, Berlin 1975.

    Google Scholar 

  24. Johnson, R. G., and Haynes, R. H., Evidence from photoreaction kinetics for multiple DNA photolyases in yeast (Saccharomyces cerevisiae). Photochem. Photobiol.43 (1986) 423–428.

    PubMed  Google Scholar 

  25. Koga, K., Sato, T., and Ootaki, T., Negative phototropism in the piloboloid mutants ofPhycomyces blakeslecanus. Planta162 (1984) 97–103.

    Article  Google Scholar 

  26. Li, K. H., Bioluminescence and stimulated coherent radiation. Laser Elektro-Optik3 (1981) 32–35.

    Google Scholar 

  27. Li, K. H., and Popp, F. A., Non-exponential decay law of radiation systems with coherent rescattering. Phys. Lett.93A (1983) 262–266.

    Google Scholar 

  28. Li, K. H., Popp, F. A., Nagl, W., and Klima, H., Indications of optical coherence in biological systems and its possible significance, in: Coherent Excitations in Biological Systems. Eds H. Fröhlich and F. Kremer. Springer-Verlag, Berlin, Heidelberg, New York 1983.

    Google Scholar 

  29. Li, K. H., and Popp, F. A., Collective vibrations and coherent photon storage in DNA molecules; in preparation.

  30. Lotmar, R., Die Ultraviolett-Strahlung und ihre biologisch-medizinische Bedeutung. Naturwiss. Rdsch.25 (1972) 89–99.

    Google Scholar 

  31. Mandoli, D. F., and Briggs, W. R., Optical properties of etiolated plant tissues. Proc. natl Acad. Sci. USA79 (1982) 2902–2906.

    Google Scholar 

  32. McElroy, W. D., Biolumineszenz-Chemie und biologische Bedeutung. Umschau in Wissenschaft und Technik69 (1969) 472–474.

    Google Scholar 

  33. Metzner, H., Photosynthese-Umwandlung der Sonnenenergie. Umschau in Wissenschaft und Technik75 (1975) 435–441.

    Google Scholar 

  34. Nagl, W., and Popp, F. A., A physical (electromagnetic) model of differentiation. Basic considerations. Cytobios37 (1983) 45–62.

    PubMed  Google Scholar 

  35. Perina, J., Coherence of Light. Von Nostrand Reinhold Company, London, New York, Cincinnati, Toronto, Melbourne 1971.

    Google Scholar 

  36. Polyak, S. L., The Retina. The Univ. of Chicago Press, Chicago 1941.

    Google Scholar 

  37. Popp, F. A., Einige Möglichkeiten für Biosignale zur Steuerung des Zellwachstums. Arch. Geschwulstforsch.44 (1974) 295–301.

    Google Scholar 

  38. Popp, F. A., Biophotonen. Ein neuer Weg zur Lösung des Krebsproblems. Verlag für Medizin, Dr. Ewald Fischer, Heidelberg 1976.

    Google Scholar 

  39. Popp, F. A., and Ruth, B., Untersuchungen zur ultraschwachen Lumineszenz aus biologischen Systemen unter Berücksichtigung der Bedeutung für die Arzneimittelforschung. Arzneimittelforsch./Drug Res.27 (1977) 933–940.

    Google Scholar 

  40. Popp, F. A., Photon-storage in biological systems, in: Electromagnetic Bio-Information, pp. 123–149. Eds F. A. Popp, G. Becker, H. L. König and W. Pescerka. Urban & Schwarzenberg, München, Baltimore 1979.

    Google Scholar 

  41. Popp, F. A., Ruth, B., Bahr, W., Böhm, J., Groß, P., Grolig, G., Rattemeyer, M., Schmidt, H. G., and Wulle, P., Emission of visible and ultraviolet radiation by active biological systems. Coll. Phenomena3 (1981) 187–214.

    Google Scholar 

  42. Popp, F. A., and Nagl, W., A physical (electromagnetic) model of differentiation. Applications and examples. Cytobios37 (1983) 71–84.

    PubMed  Google Scholar 

  43. Popp, F. A., Elektromagnetische Ordnung des Zellgeschehens, in: Leitthemen: Information und Ordnung. Ed. G. Schaefer. Aulus-Verlag, Köln 1984.

    Google Scholar 

  44. Popp, F. A., Biologie des Lichts. Paul Parey Verlag, Berlin, Hamburg 1984.

    Google Scholar 

  45. Popp, F. A., Nagl, W., Li, K. H., Scholz, W., Weingärtner, O., and Wolf, R., Biophoton emission: New evidence for coherence and DNA as source. Cell Biophys.6 (1984) 33–52.

    PubMed  Google Scholar 

  46. Popp, F. A., On the coherence of ultraweak photoemission from living tissues, in: Disequilibrium and Self-Organization, pp. 207–230. Ed. C. W. Kilmister. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo 1986.

    Google Scholar 

  47. Popp, F. A., and Nagl, W., Towards an understanding of stacked base interactions: non-equilibrial phase transitions as a probable model. Polymer Bull.15 (1986) 89–91.

    Article  Google Scholar 

  48. Precht, H., Christophersen, J., Hensel, H., and Larcher, W., Temperature and Life. Springer-Verlag, Berlin, Heidelberg, New York 1973.

    Google Scholar 

  49. Rattemeyer, M., Popp, F. A., and Nagl, W., Evidence of photon emission from DNA in living systems. Naturwissenschaften68 (1981) 572–573.

    Article  PubMed  Google Scholar 

  50. Seliger, H. H., Applications of bioluminescence and chemiluminescence, in: Chemiluminescence and Bioluminescence, pp. 461–478. Eds M. J. Cormier, D. M. Hercules and J. Lee. Plenum Press, New York 1973.

    Google Scholar 

  51. Singh, K., and Nanda, K. K., Photoperiodic responds of the juvenile and the adult phases ofCallistemon viminalis. Indian J. For.7 (1985) 290–294.

    Google Scholar 

  52. Slawinski, J., Grabikowski, E., and Ciesla, L., Spectral distribution of ultraweak luminescence from germinating plants. J. Luminesc.24/25 (1981) 791–794.

    Article  Google Scholar 

  53. Slawinska, D., and Slawinski, J., Biological chemiluminescence. Photochem. Photobiol.37 (1983) 709–715.

    Google Scholar 

  54. Slawinska, D., and Slawinski, J., Low-level luminescence from biological objects, in: Chemi- and Bioluminescence, pp. 495–531. Ed. J. G. Burr. Marcel Dekker, Inc., New York, Basel 1985.

    Google Scholar 

  55. Slawinski, J., and Popp, F. A., Temperature hysteresis of low level luminescence from plants and its thermodynamical analysis. J. Pl. Physiol.130 (1987) 111–123.

    Google Scholar 

  56. Smith, H., Light-piping by plant tissues. Nature298 (1982) 423–424.

    Article  Google Scholar 

  57. Sweeney, B. M., Rhythmic Phenomena in Plants. Academic Press, Inc., New York 1969.

    Google Scholar 

  58. Sweeney, B. M., The loss of the circadian rhythm in photosynthesis in an old strain ofGonyaulax polyedra. Pl. Physiol.80 (1986) 978–981.

    Google Scholar 

  59. Thomas, J. B., Einführung in die Photobiologie. Georg Thieme Verlag, Stuttgart 1968.

    Google Scholar 

  60. Twareque, S. A., Pertinence of the semi-group law in the theory of the decay of an unstable elementary particle. Nuovo Cim.25A (1975) 134–148.

    Google Scholar 

  61. Van Wijk, R., and Schamhart, D., Regulator aspects of low intensity photon emission. Experientia44 (1988) 586–593.

    PubMed  Google Scholar 

  62. Wolf, E., Spatial coherence of resonant modes in a maser interferometer. Phys. Lett.3 (1963) 166–168.

    Article  Google Scholar 

  63. Zevenboom, W., and Mur, L. C., Growth and photosynthetic response of the cyanobacteriumMicrocystis aeruginosa in relation to photoperiodicity and irradiance. Archs Microbiol.139 (1984) 232–239.

    Article  Google Scholar 

  64. Zhuravlev, A. I., Ultraweak luminescence in biology. Trans. Moscow Soc. Naturalists, vol. 39. Nauka, Moscow 1972 (Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Popp, F.A., Li, K.H., Mei, W.P. et al. Physical aspects of biophotons. Experientia 44, 576–585 (1988). https://doi.org/10.1007/BF01953305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01953305

Key words

  • Photobiology
  • bio-communication
  • thermal radiation
  • spontaneous chemiluminescence
  • coherent radiation fields
  • exponential and hyperbolic relaxation
  • photochemical potential
  • phase transition phenomena
  • Bose condensation