Summary
By comparing the theoretically expected results of photon emission from a chaotic (thermal) field and those of an ordered (fully coherent) field with the actual experimental data, one finds ample indications for the hypothesis that ‘biophotons’ originate from a coherent field occurring within living tissues. A direct proof may be seen in the hyperbolic relaxation dynamics of spectral delayed luminescence under ergodic conditions.
A possible mechanism has to be founded on Einstein's balance equation and, under stationary conditions, on energy conservation including a photochemical potential. It is shown that the considered equations deliver, besides the thermal equilibrium, a conditionally stable region far away from equilibrium, which can help to describe both ‘biophoton emission’ and biological regulation.
Similar content being viewed by others
References
Adam, W., Biologisches Licht. Chemie in unserer Zeit7 (1973) 182–191.
Arecchi, F. T., Photocount distribution and field statistics, in: Quantum Optics, pp. 57–110. Ed. R. J. Glamber. Academic Press, New York/London 1969.
Aschoff, J., Exogene und endogene Komponente der 24-Stunden-Periodik bei Tier und Mensch. Naturwissenschaften42 (1955) 569.
Birks, J. B., Excimers. Rep. Progr. Phys.38 (1975) 903–974.
Böhm, J., Untersuchung der ultraschwachen Photonenemission von Pflanzenkeimen unter dem Einfluß von Magnetfeldern und Temperaturveränderungen. Diplomarbeit (Experimentalphysik), Marburg 1980.
Braun, R., Der Lichtsinn augenloser Tiere. Umschau in Wissenschaft und Technik58 (1958) 306–309.
Bünning, E., Die physiologische Uhr. Springer Verlag, Berlin, Göttingen, Heidelberg 1963.
Bunge, M., and Kalnay, A. J., Solution to two paradoxes in the quantum theory of unstable systems. Nuovo Cim.77B (1983) 1–18.
Clayton, R. K., Molecular Physics in Photosynthesis. Blacsdell Publ. Co., Waltham, Mass. 1965.
Chwirot, W. B., Dygdala, R. S., and Chwirot, S., Optical coherence of white-light-induced photon from microsporocytes ofLarix europea. Cytobios44 (1985) 239–249.
Chwirot, W. B., New indication of possible role of DNA in ultraweak photon emission from biological systems. J. Pl. Physiol.122 (1986) 81–86.
Chwirot, W. B., Dygdala, R. S., and Chwirot, S., Quasi-monochromatic-light-induced photon emission from microsporocytes of larch shows oscillationing decay behavior predicted by the electromagnetic model of differentiation. Cytobios47 (1987) 137–146.
Del Giudice, E., Doglia, S., Milani, M., and Vitiello, G., Collective properties of biological systems, in: Modern Bioelectrochemistry, pp. 263–287. Eds F. Gutmann and H. Keyzer. Plenum Publishing Corporation, 1986.
Dertinger, H., and Jung, H., Molekulare Strahlenbiologie. Springer-Verlag, Berlin, Göttingen, Heidelberg 1969.
Engländer, S. W., Kallenbach, N. R., Heeger, A. J., Krumhansl, J. A., and Litwin, S., Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc. natl Acad. Sci. USA77 (1980) 7222–7226.
Fain, B., Instabilities in thermal baths. Phys. Rev.24A (1981) 2685–2693.
Fonda, L., Ghirardi, G. C., and Rimini, A., Decay of unstable quantum systems. Rep. Progr. Phys.41 (1978) 587–631.
Gregory, R. L., Auge und Gehirn. Kindler-Verlag, München 1966.
Harm, W., Reparatur von Ultraviolett-Schäden in der Erbsubstanz. Umschau in Wissenschaft und Technik70 (1970) 469–472.
Harvey, E. N., Bioluminescence. Academic Press, Inc., New York 1952.
Haupt, W., Die Phototaxis der Algen, in: Handbuch der Pflanzenphysiologie, vol. XVII/1, pp. 318–370. Ed. W. Ruhland. Springer-Verlag, Berlin, Göttingen, Heidelberg 1959.
Haupt, W., Die Orientierung der Pflanzen zum Licht. Naturwiss. Rdsch.18 (1965) 261–267.
Hoffmann, P., Photosynthese. Akademie-Verlag, Berlin 1975.
Johnson, R. G., and Haynes, R. H., Evidence from photoreaction kinetics for multiple DNA photolyases in yeast (Saccharomyces cerevisiae). Photochem. Photobiol.43 (1986) 423–428.
Koga, K., Sato, T., and Ootaki, T., Negative phototropism in the piloboloid mutants ofPhycomyces blakeslecanus. Planta162 (1984) 97–103.
Li, K. H., Bioluminescence and stimulated coherent radiation. Laser Elektro-Optik3 (1981) 32–35.
Li, K. H., and Popp, F. A., Non-exponential decay law of radiation systems with coherent rescattering. Phys. Lett.93A (1983) 262–266.
Li, K. H., Popp, F. A., Nagl, W., and Klima, H., Indications of optical coherence in biological systems and its possible significance, in: Coherent Excitations in Biological Systems. Eds H. Fröhlich and F. Kremer. Springer-Verlag, Berlin, Heidelberg, New York 1983.
Li, K. H., and Popp, F. A., Collective vibrations and coherent photon storage in DNA molecules; in preparation.
Lotmar, R., Die Ultraviolett-Strahlung und ihre biologisch-medizinische Bedeutung. Naturwiss. Rdsch.25 (1972) 89–99.
Mandoli, D. F., and Briggs, W. R., Optical properties of etiolated plant tissues. Proc. natl Acad. Sci. USA79 (1982) 2902–2906.
McElroy, W. D., Biolumineszenz-Chemie und biologische Bedeutung. Umschau in Wissenschaft und Technik69 (1969) 472–474.
Metzner, H., Photosynthese-Umwandlung der Sonnenenergie. Umschau in Wissenschaft und Technik75 (1975) 435–441.
Nagl, W., and Popp, F. A., A physical (electromagnetic) model of differentiation. Basic considerations. Cytobios37 (1983) 45–62.
Perina, J., Coherence of Light. Von Nostrand Reinhold Company, London, New York, Cincinnati, Toronto, Melbourne 1971.
Polyak, S. L., The Retina. The Univ. of Chicago Press, Chicago 1941.
Popp, F. A., Einige Möglichkeiten für Biosignale zur Steuerung des Zellwachstums. Arch. Geschwulstforsch.44 (1974) 295–301.
Popp, F. A., Biophotonen. Ein neuer Weg zur Lösung des Krebsproblems. Verlag für Medizin, Dr. Ewald Fischer, Heidelberg 1976.
Popp, F. A., and Ruth, B., Untersuchungen zur ultraschwachen Lumineszenz aus biologischen Systemen unter Berücksichtigung der Bedeutung für die Arzneimittelforschung. Arzneimittelforsch./Drug Res.27 (1977) 933–940.
Popp, F. A., Photon-storage in biological systems, in: Electromagnetic Bio-Information, pp. 123–149. Eds F. A. Popp, G. Becker, H. L. König and W. Pescerka. Urban & Schwarzenberg, München, Baltimore 1979.
Popp, F. A., Ruth, B., Bahr, W., Böhm, J., Groß, P., Grolig, G., Rattemeyer, M., Schmidt, H. G., and Wulle, P., Emission of visible and ultraviolet radiation by active biological systems. Coll. Phenomena3 (1981) 187–214.
Popp, F. A., and Nagl, W., A physical (electromagnetic) model of differentiation. Applications and examples. Cytobios37 (1983) 71–84.
Popp, F. A., Elektromagnetische Ordnung des Zellgeschehens, in: Leitthemen: Information und Ordnung. Ed. G. Schaefer. Aulus-Verlag, Köln 1984.
Popp, F. A., Biologie des Lichts. Paul Parey Verlag, Berlin, Hamburg 1984.
Popp, F. A., Nagl, W., Li, K. H., Scholz, W., Weingärtner, O., and Wolf, R., Biophoton emission: New evidence for coherence and DNA as source. Cell Biophys.6 (1984) 33–52.
Popp, F. A., On the coherence of ultraweak photoemission from living tissues, in: Disequilibrium and Self-Organization, pp. 207–230. Ed. C. W. Kilmister. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo 1986.
Popp, F. A., and Nagl, W., Towards an understanding of stacked base interactions: non-equilibrial phase transitions as a probable model. Polymer Bull.15 (1986) 89–91.
Precht, H., Christophersen, J., Hensel, H., and Larcher, W., Temperature and Life. Springer-Verlag, Berlin, Heidelberg, New York 1973.
Rattemeyer, M., Popp, F. A., and Nagl, W., Evidence of photon emission from DNA in living systems. Naturwissenschaften68 (1981) 572–573.
Seliger, H. H., Applications of bioluminescence and chemiluminescence, in: Chemiluminescence and Bioluminescence, pp. 461–478. Eds M. J. Cormier, D. M. Hercules and J. Lee. Plenum Press, New York 1973.
Singh, K., and Nanda, K. K., Photoperiodic responds of the juvenile and the adult phases ofCallistemon viminalis. Indian J. For.7 (1985) 290–294.
Slawinski, J., Grabikowski, E., and Ciesla, L., Spectral distribution of ultraweak luminescence from germinating plants. J. Luminesc.24/25 (1981) 791–794.
Slawinska, D., and Slawinski, J., Biological chemiluminescence. Photochem. Photobiol.37 (1983) 709–715.
Slawinska, D., and Slawinski, J., Low-level luminescence from biological objects, in: Chemi- and Bioluminescence, pp. 495–531. Ed. J. G. Burr. Marcel Dekker, Inc., New York, Basel 1985.
Slawinski, J., and Popp, F. A., Temperature hysteresis of low level luminescence from plants and its thermodynamical analysis. J. Pl. Physiol.130 (1987) 111–123.
Smith, H., Light-piping by plant tissues. Nature298 (1982) 423–424.
Sweeney, B. M., Rhythmic Phenomena in Plants. Academic Press, Inc., New York 1969.
Sweeney, B. M., The loss of the circadian rhythm in photosynthesis in an old strain ofGonyaulax polyedra. Pl. Physiol.80 (1986) 978–981.
Thomas, J. B., Einführung in die Photobiologie. Georg Thieme Verlag, Stuttgart 1968.
Twareque, S. A., Pertinence of the semi-group law in the theory of the decay of an unstable elementary particle. Nuovo Cim.25A (1975) 134–148.
Van Wijk, R., and Schamhart, D., Regulator aspects of low intensity photon emission. Experientia44 (1988) 586–593.
Wolf, E., Spatial coherence of resonant modes in a maser interferometer. Phys. Lett.3 (1963) 166–168.
Zevenboom, W., and Mur, L. C., Growth and photosynthetic response of the cyanobacteriumMicrocystis aeruginosa in relation to photoperiodicity and irradiance. Archs Microbiol.139 (1984) 232–239.
Zhuravlev, A. I., Ultraweak luminescence in biology. Trans. Moscow Soc. Naturalists, vol. 39. Nauka, Moscow 1972 (Russian).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Popp, F.A., Li, K.H., Mei, W.P. et al. Physical aspects of biophotons. Experientia 44, 576–585 (1988). https://doi.org/10.1007/BF01953305
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF01953305