A historical review of the problem of mitogenetic radiation

Summary

The ‘miracle of caryokinesis’ was the starting point that stimulated Alexander G. Gurwitsch to carry out his famous ‘mitogenetic’ experiments in 1923. The results obtained confirmed his hypothesis of a weak radiation from cells, which is able to trigger the growth of other cells. Extensive experimental work within the first two decades after this discovery indicated that the problem of mitogenetic radiations is generally related to the biological significance of UV-radiation. Both ‘energetic’ and ‘informational’ aspects have to be considered, namely radiation effective in activating molecules, and that involved in arranging them into larger units.

The molecular organization of biological structures is evidently governed by nonequilibrium conditions needing the uptake or emission of radiation. These concepts of A. G. Gurwitsch can be linked with modern approaches based on hypotheses of coherence in biology, ‘synergetics’ and ‘dissipative structures’. However, the question of causal interrelationships between this part of non-equilibrium radiation and biological matter on different levels of evolution has to be solved now.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Audubert, R., Emission of ultra-violet rays by chemical reactions. Trans. Farad. Soc.N 213 (1939) 198–206.

    Google Scholar 

  2. 2

    Barth, H., Physikalische Versuche zum Problem der mitogenetischen Strahlung. Biochem. Z.285 (1936) 311–339.

    Google Scholar 

  3. 3

    Frankenburger, W., Neuere Ansichten über das Wesen photochemischer Prozesse und ihre Beziehungen zu biologischen Vorgängen. Strahlentherapie47 (1933) 233–262.

    Google Scholar 

  4. 4

    Fröhlich, H., The biological effects of microwaves and related questions. Adv. Electronics Electron Phys.53 (1980) 85–152.

    Google Scholar 

  5. 5

    Glasser, O., and Barth, H., Studies on the problem of mitogenetic radiation. Radiology30 (1938) 62–67.

    Google Scholar 

  6. 6

    Gurwitsch, A. A., The problem of mitogenetic radiation as an aspect of molecular biology, Meditsina, Leningrad Branch, USSR Academy of Medical Sciences, Leningrad 1968, p. 5–237 (in Russian).

    Google Scholar 

  7. 7

    Gurwitsch, A. G., Über Determination, Normierung und Zufall in der Ontogenese. Arch. EntwMech. Org.30 (1910), 133–193.

    Google Scholar 

  8. 8

    Gurwitsch, A. G., Untersuchungen über den zeitlichen Faktor der Zellteilung. Arch. EntwMech. Org.32 (1911) 447–471.

    Google Scholar 

  9. 9

    Gurwitsch, A. G., Die Vererbung als Verwirklichungsvorgang. Biol. Zbl.32 (1912) 458–486.

    Google Scholar 

  10. 10

    Gurwitsch, A. G., Über Synchronismus der Zellteilungen. Arch. EntwMechn. Org.38 (1913).

  11. 11

    Gurwitsch, A. G., Über Ursachen der Zellteilung. Arch. EntwMech. Org.52 (1922) 167–181.

    Google Scholar 

  12. 12

    Gurwitsch, A. G., Über den Begriff des embryonalen Feldes. Arch. EntwMech. Org.51 (1922) 383–415.

    Google Scholar 

  13. 13

    Gurwitsch, A. G., Versuch einer synthetischen Biologie. Schaxel's Abhandlung Z. theor. Biol.17 (1923) 1–87.

    Google Scholar 

  14. 14

    Gurwitsch, A. G., Die Natur des spezifischen Erregers der Zellteilung. Arch. EntwMech. Org.100 (1923) 11–40.

    Google Scholar 

  15. 15

    Gurwitsch, A. G., Das Problem der Zellteilung physiologisch betrachtet. Springer Verlag, 1926.

  16. 16

    Gurwitsch, A. G., Der Begriff der Äquipotentialität in seiner Anwendung auf physiologische Probleme. Arch. EntwMech. Org.116 (1929) 20–35.

    Google Scholar 

  17. 17

    Gurwitsch, A. G., Die histologischen Grundlagen der Biologie. Fischer Verlag, 1930.

  18. 18

    Gurwitsch, A. G. and Gurwitsch, L. D., Zwanzig Jahre des Problems der mitogenetischen Strahlung (Die Entstehung, weitere Entwicklung und Perspektiven). Progr. mod. Biol.16 (1943) 305–333 (in Russian).

    Google Scholar 

  19. 19

    Gurwitsch, A. G., The Theory of the Biological Field. Sovjetskaya Nauka Publishing House, Moscow 1944 (in Russian).

    Google Scholar 

  20. 20

    Gurwitsch, A. G., and Gurwitsch, L. D., Mitogenetic Radiation: Physico-Chemical Grounds and Applications in Biology and Medicine. Medgiz Publishing House, Moscow 1945 (in Russian).

    Google Scholar 

  21. 21

    Gurwitsch, A. G., Une théorie du champ biologique cellulaire. Series D Bibliotheca Biotheoretica2 (1947) 1–149.

    Google Scholar 

  22. 22

    Gurwitsch, A. G., and Gurwitsch, L. D., Introduction to the Doctrine of Mitogenesis. USSR Academy of Medical Sciences Publishing House. Moscow 1948 (in Russian).

    Google Scholar 

  23. 23

    Gurwitsch, A. G., and Gurwitsch, L. D., Die mitogenetische Strahlung. Fischer Verlag, Jena 1959.

    Google Scholar 

  24. 24

    Gurwitsch, A. G., Selected Works, Eds. L. V. Beloussov, A. A. Gurwitsch and S. Y. Salkind, Meditsina, USSR Academy of Medical Sciences, Moscow 1977 (in Russian).

    Google Scholar 

  25. 25

    Haken, H., Synergetics — An Introduction. Springer, Berlin 1977.

    Google Scholar 

  26. 26

    Hollaender, A., and Claus, W., An experimental study of the problem of mitogenetic radiation. Bull. natl Res. Council NIOO (1937) 3-96.

  27. 27

    Konev, S. W., Electronic-excited states of biopolymer. (russ), Minsk (1965) 1–86.

  28. 28

    Kreuchen, K., and Bateman, J., Physikalische und biologische Untersuchungen über mitogenetische Strahlung. Protoplasma22 (1934) 243–273.

    Article  Google Scholar 

  29. 29

    Li, K. H, L'ADN en tant que source de rayonnement coherent, in: Synergie et cohérence dans les systèmes biologiques, p. 143–156. Ed. Z. W. Wolkowski. Comptes-rendus d'un seminaire transdisciplinaire à l'Université Paris VII et à l'Université Pierre et Marie Curie, April 1983 and March 1984. Published by Les Amis de E 4, 2 Place Jussieu, F-75251 Paris Cedex 05, Paris 1985, ISBN 2-905763-03-5.

    Google Scholar 

  30. 30

    Lorenz, E., Search for mitogenetic radiation by means of the photoelectric method. J. gen. Physiol.17 (1934) 843–862.

    Article  Google Scholar 

  31. 31

    Magrou, J., and Magrou, M., Action a distance de facteurs biologique et chimique sur le development de l'oeuf d'oursin. Ann. Sci. nat. Zool.14 (1931) 149–188.

    Google Scholar 

  32. 32

    Magrou, J., and Magrou, M., Recherches sur les radiations mitogenetiques. Bull. Hist. appl. (1927) 253–262.

  33. 33

    Magrou, J., and Magrou, M., Action a distance et development de l'oeuf d'orsin. Nouvelles experience. C. r. Acad. Sci.191 (1930) 1–3.

    Google Scholar 

  34. 34

    Nagl, W., and Popp, F. A., A physical (electromagnetic) model of differentiation. I. Basic considerations. Cytobios37 (1983), 45–62.

    PubMed  Google Scholar 

  35. 35

    Nicolis, G., and Prigogine, I., Self-Organization in Nonequilibrium Systems. Wiley, New York-London 1977.

    Google Scholar 

  36. 36

    Popp, F. A., Photon storage in biological systems, in: Electromagnetic Bioinformation, p. 123–149. Urban and Schwarzenberg, Vienna 1979.

    Google Scholar 

  37. 37

    Popp, F. A., Ruth, B., Bahr, W., Böhm, J., Graß, P., Grolig, G., Rattemeyer, M., Schmidt, H. G., and Wulle, P., Emission of visible and ultraviolet radiation by active biological systems. Coll. Phenomena3 (1981) 187–214.

    Google Scholar 

  38. 38

    Popp, F. A., Nagl, W., A physical (electromagnetic) model of differentiation. II. Applications and examples. Cytobios37 (1983) 71–83.

    PubMed  Google Scholar 

  39. 39

    Popp, F. A., Biologie des Lichts. Paul Parey. Berlin 1984.

    Google Scholar 

  40. 40

    Prigogine, I., From Being to Becoming. W. H. Freeman & Co., San Francisco 1980.

    Google Scholar 

  41. 41

    Rahn, O., Invisible Radiation of Organisms. Gebrüder Bornträger, Berlin 1936.

    Google Scholar 

  42. 42

    Siebert, W., and Seffert, H., Ein neues Verfahren für den biologischen Nachweis der mitogenetischen Strahlung. Biochem. Z.287 (1936) 92–103.

    Google Scholar 

  43. 43

    Siebert, W., and Seffert, H., Zur Frage der Blutstrahlung bei Krankheiten, insbesondere bei Geschwülsten. Biochem. Z.289 (1937) 292–293.

    Google Scholar 

  44. 44

    Siebert, W., and Seffert, H., Die Blutstrahlung und die Auslöschung mitogenetischer Strahlung bei Krankheiten. Biochem. Z.301 (1939) 301–314.

    Google Scholar 

  45. 45

    Wolff, L. K., and Ras, G., Einige Untersuchungen über die mitogenetische Strahlung von Gurwitsch. Zbl. f. Bakteriol.123 (1931) 257–270.

    Google Scholar 

  46. 46

    Wolff, L. K., and Ras, G., Über Gurwitschstrahlen bei einfachen chemischen Reaktionen. Biochem. Z.250 (1932) 305–307.

    Google Scholar 

  47. 47

    Wolff, L. K., and Ras, G., Über mitogenetische Strahlen. V. Mitt. Über die Methodik zum Nachweis von Gurwitschtrahlen. Zbl. f. Bakteriol.128 (1933) 314–319.

    Google Scholar 

  48. 48

    Wolkowski, Z. W., Le concept de champ: de la physique a la biologie, in: Synergie et cohérence dans les systèmes biologiques, p. 121–137. Ed. Z. W. Wolkowski. Comptes-rendus d'un seminaire transdisciplinaire à l'Université Paris VII et à l'Université Pierre et Marie Curie, April 1983–March 1984. Published by Les Amis de E4, 2 Place Jussieu, F-75251 Paris Cedex 05, Paris 1985, ISBN 2-905763-03-5.

    Google Scholar 

  49. 49

    Yanbastiev, M. I., Main and additional problems of biophotonics. J. molec. Struc.115 (1984) 299–302.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gurwitsch, A.A. A historical review of the problem of mitogenetic radiation. Experientia 44, 545–550 (1988). https://doi.org/10.1007/BF01953301

Download citation

Key words

  • Mitogenetic radiation
  • caryokinesis
  • mitosis
  • molecular organization structure
  • degradation radiation
  • resonance coherence
  • synergetics
  • dissipative structures