Advertisement

Experientia

, Volume 44, Issue 7, pp 545–550 | Cite as

A historical review of the problem of mitogenetic radiation

  • A. A. Gurwitsch
Multi-Author Review Biophoton Emission Reviews

Summary

The ‘miracle of caryokinesis’ was the starting point that stimulated Alexander G. Gurwitsch to carry out his famous ‘mitogenetic’ experiments in 1923. The results obtained confirmed his hypothesis of a weak radiation from cells, which is able to trigger the growth of other cells. Extensive experimental work within the first two decades after this discovery indicated that the problem of mitogenetic radiations is generally related to the biological significance of UV-radiation. Both ‘energetic’ and ‘informational’ aspects have to be considered, namely radiation effective in activating molecules, and that involved in arranging them into larger units.

The molecular organization of biological structures is evidently governed by nonequilibrium conditions needing the uptake or emission of radiation. These concepts of A. G. Gurwitsch can be linked with modern approaches based on hypotheses of coherence in biology, ‘synergetics’ and ‘dissipative structures’. However, the question of causal interrelationships between this part of non-equilibrium radiation and biological matter on different levels of evolution has to be solved now.

Key words

Mitogenetic radiation caryokinesis mitosis molecular organization structure degradation radiation resonance coherence synergetics dissipative structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audubert, R., Emission of ultra-violet rays by chemical reactions. Trans. Farad. Soc.N 213 (1939) 198–206.Google Scholar
  2. 2.
    Barth, H., Physikalische Versuche zum Problem der mitogenetischen Strahlung. Biochem. Z.285 (1936) 311–339.Google Scholar
  3. 3.
    Frankenburger, W., Neuere Ansichten über das Wesen photochemischer Prozesse und ihre Beziehungen zu biologischen Vorgängen. Strahlentherapie47 (1933) 233–262.Google Scholar
  4. 4.
    Fröhlich, H., The biological effects of microwaves and related questions. Adv. Electronics Electron Phys.53 (1980) 85–152.Google Scholar
  5. 5.
    Glasser, O., and Barth, H., Studies on the problem of mitogenetic radiation. Radiology30 (1938) 62–67.Google Scholar
  6. 6.
    Gurwitsch, A. A., The problem of mitogenetic radiation as an aspect of molecular biology, Meditsina, Leningrad Branch, USSR Academy of Medical Sciences, Leningrad 1968, p. 5–237 (in Russian).Google Scholar
  7. 7.
    Gurwitsch, A. G., Über Determination, Normierung und Zufall in der Ontogenese. Arch. EntwMech. Org.30 (1910), 133–193.Google Scholar
  8. 8.
    Gurwitsch, A. G., Untersuchungen über den zeitlichen Faktor der Zellteilung. Arch. EntwMech. Org.32 (1911) 447–471.Google Scholar
  9. 9.
    Gurwitsch, A. G., Die Vererbung als Verwirklichungsvorgang. Biol. Zbl.32 (1912) 458–486.Google Scholar
  10. 10.
    Gurwitsch, A. G., Über Synchronismus der Zellteilungen. Arch. EntwMechn. Org.38 (1913).Google Scholar
  11. 11.
    Gurwitsch, A. G., Über Ursachen der Zellteilung. Arch. EntwMech. Org.52 (1922) 167–181.Google Scholar
  12. 12.
    Gurwitsch, A. G., Über den Begriff des embryonalen Feldes. Arch. EntwMech. Org.51 (1922) 383–415.Google Scholar
  13. 13.
    Gurwitsch, A. G., Versuch einer synthetischen Biologie. Schaxel's Abhandlung Z. theor. Biol.17 (1923) 1–87.Google Scholar
  14. 14.
    Gurwitsch, A. G., Die Natur des spezifischen Erregers der Zellteilung. Arch. EntwMech. Org.100 (1923) 11–40.Google Scholar
  15. 15.
    Gurwitsch, A. G., Das Problem der Zellteilung physiologisch betrachtet. Springer Verlag, 1926.Google Scholar
  16. 16.
    Gurwitsch, A. G., Der Begriff der Äquipotentialität in seiner Anwendung auf physiologische Probleme. Arch. EntwMech. Org.116 (1929) 20–35.Google Scholar
  17. 17.
    Gurwitsch, A. G., Die histologischen Grundlagen der Biologie. Fischer Verlag, 1930.Google Scholar
  18. 18.
    Gurwitsch, A. G. and Gurwitsch, L. D., Zwanzig Jahre des Problems der mitogenetischen Strahlung (Die Entstehung, weitere Entwicklung und Perspektiven). Progr. mod. Biol.16 (1943) 305–333 (in Russian).Google Scholar
  19. 19.
    Gurwitsch, A. G., The Theory of the Biological Field. Sovjetskaya Nauka Publishing House, Moscow 1944 (in Russian).Google Scholar
  20. 20.
    Gurwitsch, A. G., and Gurwitsch, L. D., Mitogenetic Radiation: Physico-Chemical Grounds and Applications in Biology and Medicine. Medgiz Publishing House, Moscow 1945 (in Russian).Google Scholar
  21. 21.
    Gurwitsch, A. G., Une théorie du champ biologique cellulaire. Series D Bibliotheca Biotheoretica2 (1947) 1–149.Google Scholar
  22. 22.
    Gurwitsch, A. G., and Gurwitsch, L. D., Introduction to the Doctrine of Mitogenesis. USSR Academy of Medical Sciences Publishing House. Moscow 1948 (in Russian).Google Scholar
  23. 23.
    Gurwitsch, A. G., and Gurwitsch, L. D., Die mitogenetische Strahlung. Fischer Verlag, Jena 1959.Google Scholar
  24. 24.
    Gurwitsch, A. G., Selected Works, Eds. L. V. Beloussov, A. A. Gurwitsch and S. Y. Salkind, Meditsina, USSR Academy of Medical Sciences, Moscow 1977 (in Russian).Google Scholar
  25. 25.
    Haken, H., Synergetics — An Introduction. Springer, Berlin 1977.Google Scholar
  26. 26.
    Hollaender, A., and Claus, W., An experimental study of the problem of mitogenetic radiation. Bull. natl Res. Council NIOO (1937) 3-96.Google Scholar
  27. 27.
    Konev, S. W., Electronic-excited states of biopolymer. (russ), Minsk (1965) 1–86.Google Scholar
  28. 28.
    Kreuchen, K., and Bateman, J., Physikalische und biologische Untersuchungen über mitogenetische Strahlung. Protoplasma22 (1934) 243–273.CrossRefGoogle Scholar
  29. 29.
    Li, K. H, L'ADN en tant que source de rayonnement coherent, in: Synergie et cohérence dans les systèmes biologiques, p. 143–156. Ed. Z. W. Wolkowski. Comptes-rendus d'un seminaire transdisciplinaire à l'Université Paris VII et à l'Université Pierre et Marie Curie, April 1983 and March 1984. Published by Les Amis de E 4, 2 Place Jussieu, F-75251 Paris Cedex 05, Paris 1985, ISBN 2-905763-03-5.Google Scholar
  30. 30.
    Lorenz, E., Search for mitogenetic radiation by means of the photoelectric method. J. gen. Physiol.17 (1934) 843–862.CrossRefGoogle Scholar
  31. 31.
    Magrou, J., and Magrou, M., Action a distance de facteurs biologique et chimique sur le development de l'oeuf d'oursin. Ann. Sci. nat. Zool.14 (1931) 149–188.Google Scholar
  32. 32.
    Magrou, J., and Magrou, M., Recherches sur les radiations mitogenetiques. Bull. Hist. appl. (1927) 253–262.Google Scholar
  33. 33.
    Magrou, J., and Magrou, M., Action a distance et development de l'oeuf d'orsin. Nouvelles experience. C. r. Acad. Sci.191 (1930) 1–3.Google Scholar
  34. 34.
    Nagl, W., and Popp, F. A., A physical (electromagnetic) model of differentiation. I. Basic considerations. Cytobios37 (1983), 45–62.PubMedGoogle Scholar
  35. 35.
    Nicolis, G., and Prigogine, I., Self-Organization in Nonequilibrium Systems. Wiley, New York-London 1977.Google Scholar
  36. 36.
    Popp, F. A., Photon storage in biological systems, in: Electromagnetic Bioinformation, p. 123–149. Urban and Schwarzenberg, Vienna 1979.Google Scholar
  37. 37.
    Popp, F. A., Ruth, B., Bahr, W., Böhm, J., Graß, P., Grolig, G., Rattemeyer, M., Schmidt, H. G., and Wulle, P., Emission of visible and ultraviolet radiation by active biological systems. Coll. Phenomena3 (1981) 187–214.Google Scholar
  38. 38.
    Popp, F. A., Nagl, W., A physical (electromagnetic) model of differentiation. II. Applications and examples. Cytobios37 (1983) 71–83.PubMedGoogle Scholar
  39. 39.
    Popp, F. A., Biologie des Lichts. Paul Parey. Berlin 1984.Google Scholar
  40. 40.
    Prigogine, I., From Being to Becoming. W. H. Freeman & Co., San Francisco 1980.Google Scholar
  41. 41.
    Rahn, O., Invisible Radiation of Organisms. Gebrüder Bornträger, Berlin 1936.Google Scholar
  42. 42.
    Siebert, W., and Seffert, H., Ein neues Verfahren für den biologischen Nachweis der mitogenetischen Strahlung. Biochem. Z.287 (1936) 92–103.Google Scholar
  43. 43.
    Siebert, W., and Seffert, H., Zur Frage der Blutstrahlung bei Krankheiten, insbesondere bei Geschwülsten. Biochem. Z.289 (1937) 292–293.Google Scholar
  44. 44.
    Siebert, W., and Seffert, H., Die Blutstrahlung und die Auslöschung mitogenetischer Strahlung bei Krankheiten. Biochem. Z.301 (1939) 301–314.Google Scholar
  45. 45.
    Wolff, L. K., and Ras, G., Einige Untersuchungen über die mitogenetische Strahlung von Gurwitsch. Zbl. f. Bakteriol.123 (1931) 257–270.Google Scholar
  46. 46.
    Wolff, L. K., and Ras, G., Über Gurwitschstrahlen bei einfachen chemischen Reaktionen. Biochem. Z.250 (1932) 305–307.Google Scholar
  47. 47.
    Wolff, L. K., and Ras, G., Über mitogenetische Strahlen. V. Mitt. Über die Methodik zum Nachweis von Gurwitschtrahlen. Zbl. f. Bakteriol.128 (1933) 314–319.Google Scholar
  48. 48.
    Wolkowski, Z. W., Le concept de champ: de la physique a la biologie, in: Synergie et cohérence dans les systèmes biologiques, p. 121–137. Ed. Z. W. Wolkowski. Comptes-rendus d'un seminaire transdisciplinaire à l'Université Paris VII et à l'Université Pierre et Marie Curie, April 1983–March 1984. Published by Les Amis de E4, 2 Place Jussieu, F-75251 Paris Cedex 05, Paris 1985, ISBN 2-905763-03-5.Google Scholar
  49. 49.
    Yanbastiev, M. I., Main and additional problems of biophotonics. J. molec. Struc.115 (1984) 299–302.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1988

Authors and Affiliations

  • A. A. Gurwitsch
    • 1
  1. 1.Institute of General Pathology and PathophysiologyAcademy of the Medical Sciences of the USSRMoscow(USSR)

Personalised recommendations