Skip to main content
Log in

The evolutionary conservation of eukaryotic gene transcription

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The basic components required for eukaryotic gene transcription have been highly conserved in evolution. Structural and functional homology has now been documented among promoters, promoter factors, regulatory proteins, and RNA polymerases from eukaryotes as diverse as yeast and mammals. The ability of these proteins and DNA sequences to function across phylogenetic boundaries demonstrates that common molecular mechanisms underlie gene control in all eukaryotic cells, and provides the basis for powerful new approaches to the study of eukaryotic gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Allison, L. A., Wong, J. K. C., Fitzpatrick, V. D., Moyle, M., and Ingles, C. J., The C-terminal domain of the largest subunit of RNA polymerase II ofSaccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function. Molec. cell. Biol.8 (1988) 321–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Allison, L. A., Moyle, M., Shales, M., and Ingles, C. J., Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell42 (1985) 599–610.

    Article  CAS  PubMed  Google Scholar 

  3. Beato, M., Gene regulation by steroid hormones. Cell56 (1989) 335–344.

    Article  CAS  PubMed  Google Scholar 

  4. Beggs, J. D., van den Berg, J., van Ooyen, A., and Weissmann, C., Abnormal express of chromosomal rabbit β-globin gene inSaccharomyces cerevisiae. Nature283 (1980) 835–840.

    Article  CAS  PubMed  Google Scholar 

  5. Benoist, C., O'Hara, K., Breathnach, R., and Chambon, P., The ovalbumin gene: sequence and putative control regions. Nucl. Acids Res.8 (1980) 127–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berg, J., Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. Proc. natl Acad. Sci. USA85 (1988) 99–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bishop, J. M., The molecular genetics of cancer. Science235 (1987) 305–311.

    Article  CAS  PubMed  Google Scholar 

  8. Bohmann, D., Bos, T. J., Admon, A., Nishimura, T., Vogt, P. K., and Tjian, R., Human protooncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science238 (1987) 1386–1392.

    Article  CAS  PubMed  Google Scholar 

  9. Brandl, C. J., and Struhl, K., Yeast GCN4 transcriptional activator protein interacts with RNA polymerase II in vitro. Proc. natl Acad. Sci. USA86 (1989) 2652–2656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buratowski, S., Hahn, S., Guarente, L., and Sharp, P. A., Five intermediate complexes in transcription initiation by RNA polymerase II. Cell56 (1989) 549–561.

    Article  CAS  PubMed  Google Scholar 

  11. Buratowski, S., Hahn, S., Sharp, P. A., and Guarente, L., Function of a yeast TATA element binding protein in a mammalian transcription system. Nature334 (1988) 37–42.

    Article  CAS  PubMed  Google Scholar 

  12. Burshell, A., Stathis, P. A., Do, Y., Miller, S. C., and Feldman, D., Characterization of an estrogen-binding protein in the yeastSaccharomyces cerevisiae. J. biol. Chem.259 (1984) 3450–3456.

    Article  CAS  PubMed  Google Scholar 

  13. Cavallini, B., Huet, J., Plassat, J.-L., Sentenac, A., Egly, J.-M., and Chambon, P., A yeast activity can substitute for the HeLa cell TATA box factor. Nature334 (1988) 77–80.

    Article  CAS  PubMed  Google Scholar 

  14. Chandler, V. L., Maler, B. A., and Yamamoto, K. R., DNA sequences bound specifically by the glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell33 (1983) 489–499.

    Article  CAS  PubMed  Google Scholar 

  15. Chodosh, L. A., Olesen, J., Hahn, S., Baldwin, A. S., Guarente, L., and Sharp, P. A., A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable. Cell53 (1988) 25–35.

    Article  CAS  PubMed  Google Scholar 

  16. Chodosh, L. A., Baldwin, A. S., Carthew, R. C., and Sharp, P. A., Human CCAAT-binding proteins have heterologous subunits. Cell53 (1988) 11–24.

    Article  CAS  PubMed  Google Scholar 

  17. Corden, J. L., Cadena, D. L., Ahearn, J. M., Jr., and Dahmus, M. E., A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. Proc. natl Acad. Sci. USA82 (1985) 7934–7938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Courey, A. J., and Tjian, R., Analysis of Sp1 in vivo reveals multiple transcription activation domains, including a novel glutamine-rich activation motif. Cell55 (1988) 887–898.

    Article  CAS  PubMed  Google Scholar 

  19. Evans, R. M., The steroid and thyroid hormone receptor superfamily. Science240 (1988) 889–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fire, A., Samuels, M., and Sharp, P., Interactions between RNA polymerase II, factors, and template leading to accurate transcription. J. biol. Chem.259 (1984) 2509–2516.

    Article  CAS  PubMed  Google Scholar 

  21. Fischer, J. A., Giniger, E., Maniatis, T., and Ptashne, M., GAL4 activates transcription inDrosophila. Nature332 (1988) 853–856.

    Article  CAS  PubMed  Google Scholar 

  22. Freedman, L. P., Luisi, B. F., Korzun, Z. R., Basavappi, R., Sigler, P. K. B., and Yamamoto, K. R., The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. Nature334 (1988) 543–546.

    Article  CAS  PubMed  Google Scholar 

  23. Gill, G., and Ptashne, M., Mutants of GAL4 protein altered in an activation function. Cell51 (1987) 121–126.

    Article  CAS  PubMed  Google Scholar 

  24. Gill, G., and Ptashne, M., Negative effect of the transcriptional activator GAL4. Nature334 (1988) 721–724.

    Article  CAS  PubMed  Google Scholar 

  25. Giniger, E., and Ptashne, M., Transcription in yeast activated by a putative amphiphathic α-helix linked to a DNA binding unit. Nature330 (1987) 670–672.

    Article  CAS  PubMed  Google Scholar 

  26. Godowski, P. J., Picard, D., and Yamamoto, K. R., Signal transduction and transcriptional regulation by glucocorticoid receptor-lexA fusion proteins. Science241 (1988) 812–816.

    Article  CAS  PubMed  Google Scholar 

  27. Green, S., and Chambon, P., Nuclear receptors enhance our understanding of transcription regulation. Trends Genet.4 (1988) 309–314.

    Article  CAS  PubMed  Google Scholar 

  28. Greenleaf, A. L., Borsett, L. M., Jiamachello, P. F., and Coulter, D. E., α-Amanitin resistantD. melanogaster with an altered RNA polymerase II. Cell18 (1979) 613–622.

    Article  CAS  PubMed  Google Scholar 

  29. Greenleaf, A. L., Amanitin-resistant RNA polymerase II mutations are in the enzyme's largest subunit. J. biol. Chem. (1983) 13403–13406.

  30. Grosschedl, R., and Birnstiel, M. L., Spacer DNA sequences upstream of the T-A-T-A-A-A-T-A sequence are essential for promotion of H2A histone gene transcription in vivo. Proc. natl Acad. Sci. USA77 (1980) 7102–7106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guarente, L., UASs and enhancers: common mechanism of transcription activation in yeast and mammals. Cell52 (1988) 303–305.

    Article  CAS  PubMed  Google Scholar 

  32. Guarente, L., Regulatory proteins in yeast. A. Rev. Genet.21 (1987) 425–452.

    Article  CAS  Google Scholar 

  33. Guarente, L., and Hoar, E., Upstream activation sites of the CYC1 gene ofSaccharomyces cerevisiae are active when inverted but not when placed downstream of the ‘TATA box’. Proc. natl Acad. Sci. USA81 (1984) 7860–7864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guarente, L., Lalonde, B., Gifford, B., and Alani, E., Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene ofS. cerevisiae. Cell36 (1984) 503–511.

    Article  CAS  PubMed  Google Scholar 

  35. Guarente, L., Yocum, R., and Gifford, P., A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc. natl Acad. Sci. USA79 (1982) 7410–7414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hahn, S., and Guarente, L., Yeast HAP2 and HAP3: Transcriptional activators in a heteromeric complex. Science240 (1988) 317–321.

    Article  CAS  PubMed  Google Scholar 

  37. Harshman, K. D., Moye-Rowley, W.S., and Parker, C. S., Transcriptional activation by the SV40 AP-1 recognition element in yeast is mediated by a factor similar to AP-1 that is distinct from GCN4. Cell53 (1988) 321–330.

    Article  CAS  PubMed  Google Scholar 

  38. Hawley, D. K., and Roeder, R. G., Separation and partial characterization of three functional steps in transcription initiation by human RNA polymerase II. J. biol. Chem.260 (1985) 8163–8172.

    Article  CAS  PubMed  Google Scholar 

  39. Hochschild, A., Irwin, N., and Ptashne, M., Repressor structure and the mechanism of positive control. Cell32 (1983) 319–325.

    Article  CAS  PubMed  Google Scholar 

  40. Hollenberg, S. M., and Evans, R. M., Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell55 (1988) 899–906.

    Article  CAS  PubMed  Google Scholar 

  41. Hope, J. A., and Struhl, K., Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell46 (1986) 885–894.

    Article  CAS  PubMed  Google Scholar 

  42. Horikoshi, M., Carey, M. F., Kakidani, H., and Roeder, R. G., Mechanisms of action of a yeast activator: direct effect of GAL4 derivatives on mammalian TFIID-promoter interactions. Cell54 (1988) 665–669.

    Article  CAS  PubMed  Google Scholar 

  43. Jacob, F., and Monod, J., Genetic regulatory mechanisms in the synthesis of proteins. J. molec. Biol.3 (1961) 318–356.

    Article  CAS  PubMed  Google Scholar 

  44. Johnson, A. D., and Herskowitz, I., A repressor (MATα2 product) and its operator control expression of a set of cell-type specific genes in yeast. Cell42 (1985) 237–247.

    Article  CAS  PubMed  Google Scholar 

  45. Johnston, M., A model fungal gene regulatory mechanism: the GAL genes ofSaccharomyces cerevisiae. Microbiol. Rev.51 (1987) 458–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Johnston, M., Genetic evidence that zinc is an essential co-factor in the DNA binding domain of GAL4 protein. Nature328 (1987) 353–355.

    Article  CAS  PubMed  Google Scholar 

  47. Johnston, M., and Dover, J., Mutational analysis of the Gal4-encoded transcriptional activator protein ofSaccharomyces cerevisiae. Genetics120 (1988) 63–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jones, R. H., Moreno, S., Nurse, P., and Jones, N. C., Expression of the SV40 promoter in fission yeast: identification and characterization of an AP-1-like factor. Cell53 (1988) 659–667.

    Article  CAS  PubMed  Google Scholar 

  49. Jones, N. C., Rigby, P. W. J., and Ziff, E. B., Trans-acting protein factors and the regulation of eukaryotic transcription: lessons from studies on DNA tumor viruses. Genes Dev.2 (1988) 267–281.

    Article  CAS  PubMed  Google Scholar 

  50. Kakidani, H., and Ptashne, M., Gal4 activates gene expression in mammalian cells. Cell52 (1988) 161–167.

    Article  CAS  PubMed  Google Scholar 

  51. Kaufer, N. F., Simanis, V., and Nurse, P., Fission yeastSchizosaccharomyces pombe correctly exises a mammalian RNA transcript intervening sequence. Nature318 (1985) 78–80.

    Article  CAS  PubMed  Google Scholar 

  52. Klein-Hitpaß, Schorpp, M., Wagner, U., and Ryffel, G. U., An estrogen-responsive element derived from the 5′ flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell46 (1986) 1053–1061.

    Article  PubMed  Google Scholar 

  53. Klug, A., and Rhodes, D., ‘Zinc fingers’: a novel protein motif for nucleic acid recognition. Trends biochem. Sci.12 (1987) 464–469.

    Article  CAS  Google Scholar 

  54. Kornuc, M., Altman, R., Harrich, D., Garcia, H., Chao, J., Kayne, P., and Gaynor, R., Adenovirus transcriptional regulatory regions are conserved in mammalian cells andSaccharomyces cerevisiae. Molec. cell. Biol.8 (1988) 3717–3725.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lambert, P. F., Dostatni, N., McBride, A. A., Yaniv, M., Howley, P. M., and Arcangioli, B., Functional analysis of the papilloma virus E2 trans-activator inSaccharomyces cerevisiae. Genes Dev.3 (1989) 38–48.

    Article  CAS  PubMed  Google Scholar 

  56. Landschulz, W. F., Johnson, P. F., and McKnight, S. L., The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science240 (1988) 1759–1764.

    Article  CAS  PubMed  Google Scholar 

  57. Landschultz, W. H., Johnson, P. F., Adoshi, E.Y., Graves, B. J. and McKnight, S. L., Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev.2 (1988) 786–800.

    Article  Google Scholar 

  58. Lech, K., Anderson, K., and Brent, R., DNA-bound Fos proteins activate transcription in yeast. Cell52 (1988) 179–184.

    Article  CAS  PubMed  Google Scholar 

  59. Lee, W., Mitchell, P., and Tjian, R., Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell49 (1987) 741–752.

    Article  CAS  PubMed  Google Scholar 

  60. Leu, N. F., and Kornberg, R. D., Accurate initiation at RNA polymerase II promoter in extracts fromSaccharomyces cerevisiae. Proc. natl Acad. Sci. USA84 (1987) 8839–8843.

    Article  Google Scholar 

  61. Levine, M., and Hoey, T., Homeobox proteins as sequence-specific transcription factors. Cell55 (1988) 537–540.

    Article  CAS  PubMed  Google Scholar 

  62. Lindquist, S., The heat-shock response. A. Rev. Biochem.55 (1986) 1151–1191.

    Article  CAS  Google Scholar 

  63. Ma, J., Prizbilla, E., Hu, J., Bogorad, L., and Ptashne, M., Yeast activators stimulate plant gene expression. Nature334 (1988) 631–633.

    Article  CAS  PubMed  Google Scholar 

  64. Ma, L. and Ptashne, M., A new class of yeast transcriptional activators. Cell51 (1987) 113–119.

    Article  CAS  PubMed  Google Scholar 

  65. Ma, J., and Ptashne, M., Deletion analysis of Gal4 defines two transcription activating segments. Cell48 (1987) 847–853.

    Article  CAS  PubMed  Google Scholar 

  66. McBride, A. A., Schelegel, R., and Howley, P. M., The carboxy-terminal domain shared by the bovine papillomavirus E2 transactivator and repressor proteins contains a specific DNA binding activity. EMBO J.7 (1988) 533–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McClure, W. R., Mechanism and control of transcription initiation in prokaryotes. A. Rev. Biochem.54 (1985) 171–204.

    Article  CAS  Google Scholar 

  68. McKnight, S., and Tjian, R., Transcriptional selectivity of viral genes in mammalian cells. Cell46 (1986) 795–805.

    Article  CAS  PubMed  Google Scholar 

  69. Miesfeld, R., Godowski, P. J., Maler, B. A., and Yamamoto, K. R., Glucocorticoid receptor mutants that define a small region sufficient for enhancer activation. Science236 (1987) 423–427.

    Article  CAS  PubMed  Google Scholar 

  70. Metzger, D., White, J. H., and Chambon, P., The human oestrogen receptor functions in yeast. Nature334 (1988) 31–36.

    Article  CAS  PubMed  Google Scholar 

  71. Miller, J., McLachland, A. D., and Klug, A., Repetitive zinc-binding domains in the protein transcription factor IIIA fromXenopus oocytes. EMBO J.4 (1985) 1609–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nonet, M., Sweetster, R. A., and Young, R. A., Functional redundacy and structural polymorphisms in the large subunit of RNA polymerase II. Cell50 (1987) 909–915.

    Article  CAS  PubMed  Google Scholar 

  73. Olesen, J., Hahn, S., and Guarente, L., Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2, in an interdependent manner. Cell51 (1987) 953–961.

    Article  CAS  PubMed  Google Scholar 

  74. Pabo, C. O., and Sauer, R. T., Protein-DNA recognition. A. Rev. Biochem.53 (1984) 293–321.

    Article  CAS  Google Scholar 

  75. Parker, C. S., and Topol, J., ADrosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp70 gene. Cell37 (1984) 273–283.

    Article  CAS  PubMed  Google Scholar 

  76. Payvar, F., DeFranco, D., Firestone, G. L., Edgar, B., Wrange, O., Okret, S., Gustafsson, J.-A., and Yamamoto, K. R., Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region. Cell35 (1983) 381–392.

    Article  CAS  PubMed  Google Scholar 

  77. Pelham, H., Activation of heat-shock gene in eukaryotes. Trends Genet.1 (1985) 31–35.

    Article  CAS  Google Scholar 

  78. Pelham, H. R. B., A regulatory upstream promoter element in theDrosophila hsp70 heat-shock gene. Cell30 (1982) 517–528.

    Article  CAS  PubMed  Google Scholar 

  79. Pelham, H. R. B., and Bienz, M., A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene. EMBO J.1 (1982) 1473–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Picard, D., Salser, S. J., and Yamamoto, K. R., A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell54 (1988) 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  81. Ponta, H., Kennedy, N., Skroch, P., Hynes, N. E., and Groner, B., Hormonal response region in the mouse mammary tumor virus long terminal repeat can be dissociated from the proviral promoter and has enhancer properties. Proc. natl Acad. Sci. USA82 (1985) 1020–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Popham, D. L., Szeto, D., Keener, J., and Kustu, S., Function of bacterial activator protein that binds to transcriptional enhancers. Science243 (1989) 629–635.

    Article  CAS  PubMed  Google Scholar 

  83. Pratt, W. B., Jolly, D. J., Pratt, D. V., Hollenberg, S. M., Giguere, V., Cadepond, F. M., Schweizer-Groyer, G., Catelli, M.-G., Evans, R. M., and Baulieu, E.-E., A region in the steroid binding domain determines formation of the non-DNA binding, 9S glucocorticoid receptor complex. J. biol. Chem.263 (1988) 267–273.

    Article  CAS  PubMed  Google Scholar 

  84. Ptashne, M., A Genetic Switch: Gene Control and Phage λ. Cell Press & Blackwell Scientific Publications. Cambridge, Massachusetts 1986.

    Google Scholar 

  85. Ptashne, M., Gene regulation by proteins acting nearby and at a distance. Nature322 (1986) 697–701.

    Article  CAS  PubMed  Google Scholar 

  86. Ptashne, M., How eukaryotic transcriptional activators work. Nature335 (1988) 683–689.

    Article  CAS  PubMed  Google Scholar 

  87. Ptashne, M., How gene activators work. Sci. Am.260 (1989) 41–47.

    Article  Google Scholar 

  88. Reinberg, D., and Roeder, R. G., Factors involved in specific transcription by mammalian RNA polymerase II. J. biol. Chem.262 (1987) 3310–3321.

    Article  CAS  PubMed  Google Scholar 

  89. Reitzer, L. J., and Magasanik, B., Transcription ofglnA inE. coli is stimulated by activator bound to sites far from the promoter. Cell45 (1986) 785–792.

    Article  CAS  PubMed  Google Scholar 

  90. Russell, P. R., Evolutionary divergence of the mRNA transcription initiation mechanism in yeast. Nature301 (1983) 167–169.

    Article  CAS  PubMed  Google Scholar 

  91. Sadowski, I., Ma, J., Triezenberg, S., and Ptashne, M., GAL4-VP16 is an unusually potent transcriptional activator. Nature335 (1988) 563–564.

    Article  CAS  PubMed  Google Scholar 

  92. Saltzman, A. G., and Weinmann, R., Promoter specificity and modulation of RNA polymerase II transcription. FASEB J.3 (1989) 1723–1733.

    Article  CAS  PubMed  Google Scholar 

  93. Samuels, M., Fire, A., and Sharp, P. A., Separation and characterization of factors mediating accurate transcription by RNA polymerase II. J. biol. Chem.267 (1982) 14 419–14 427.

    Article  Google Scholar 

  94. Sauer, R. T., Smith, D. L., and Johnson, A. D., Flexibility of the yeast α-2 repressor enables it to occupy the ends of its operator, leaving the center free. Genes Dev.2 (1988) 807–816.

    Article  CAS  PubMed  Google Scholar 

  95. Scheidereit, C., Geisse, S., Westphal, H. M., and Beato, M., The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumour virus. Nature304 (1983) 749–752.

    Article  CAS  PubMed  Google Scholar 

  96. Schena, M., and Yamamoto, K. R., Mammalian glucocorticoid receptor derivatives enhance transcription in yeast. Science241 (1988) 965–967.

    Article  CAS  PubMed  Google Scholar 

  97. Scott, M. P., and O'Farrell, P. H., Spatial programming of gene expression in earlyDrosophila embryogenesis. A. Rev. Cell Biol.2 (1986) 49–80.

    Article  CAS  Google Scholar 

  98. Sentenac, A., Eukaryotic RNA polymerases. CRC Crit. Rev. Biochem.18 (1985) 31–90.

    Article  CAS  PubMed  Google Scholar 

  99. Sigler, P. B., Acid blobs and negative noodles. Nature333 (1988) 210–212.

    Article  CAS  PubMed  Google Scholar 

  100. Soeller, W. C., Poole, S. J., and Kornberg, T., In vitro transcription of theDrosophila engrailed gene. Genes Dev.2 (1988) 68–81.

    Article  CAS  PubMed  Google Scholar 

  101. Sorger, P. K., and Pelham, H. R. B., Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell54 (1988) 855–864.

    Article  CAS  PubMed  Google Scholar 

  102. Sorger, P. K., and Pelham, H. R. B., Purification and characterization of a heat-shock element binding protein from yeast. EMBO J.6 (1987) 3035–3041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Struhl, K., The Jun oncoprotein, a vertebrate transcription factor, activates transcription in yeast. Nature332 (1988) 649–651.

    Article  CAS  PubMed  Google Scholar 

  104. Struhl, K., The DNA-binding domains of the Jun oncoprotein and the yeast GCN4 transcriptional activator protein are functionally homologous. Cell50 (1987) 841–846.

    Article  CAS  PubMed  Google Scholar 

  105. Struhl, K., Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast. Cell49 (1987) 295–297.

    Article  CAS  PubMed  Google Scholar 

  106. Struhl, K., Helix-turn-helix, zinc-finger, and leucine zipper motifs for eukaryotic transcriptional regulatory proteins. TIBS14 (1989) 137–140.

    CAS  PubMed  Google Scholar 

  107. Triezenberg, S. J., Kingsbury, R. C., and McKnight, S. L., Functional dissection of VP-16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev.2 (1988) 718–729.

    Article  CAS  PubMed  Google Scholar 

  108. Vogt, P. K., Bos, T. J., and Doolittle, R. F., Homology between the DNA-binding domain of the GCN4 regulatory protein of yeast and the carboxyl-terminal region of a protein coded for by the oncogene jun. Proc. natl Acad. Sci. USA84 (1987) 3316–3319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Watts, F., Castle, C., and Beggs, J., Aberrant splicing ofDrosophila alcohol dehydrogenase transcripts inSaccharomyces cerevisiae. EMBO J.2 (1983) 2085–2091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Webster, N., Jin, J.R., Green, S., Hollis, M., and Chambon, P., The yeast UASG is a transcriptional enhancer in human HeLa cells in the presence of the Gal4 trans-activator. Cell52 (1988) 169–178.

    Article  CAS  PubMed  Google Scholar 

  111. Wiederrecht, G., Seto, D., and Parker, C. S., Isolation of the gene encoding theS. cerevisiae heat shock transcription factor. Cell54 (1988) 841–853.

    Article  CAS  PubMed  Google Scholar 

  112. Wiederrecht, G., Shuey, D. J., Kibbe, W. A., and Parker, C. S., TheSaccharomyces andDrosophila heat shock transcription factors are identical in size and DNa binding properties. Cell48 (1987) 507–515.

    Article  CAS  PubMed  Google Scholar 

  113. Weinberger, C., Hollenberg, S. M., Rosenfeld, M. G., and Evans, R. M., Domain structure of human glucocorticoid receptor and its relationship of the v-erbA oncogene product. Nature318 (1985) 670–672.

    Article  CAS  PubMed  Google Scholar 

  114. Yamamoto, K. R., Stampfer, M. R., and Tompkins, G. M., Receptors from glucocorticoid-sensitive lymphoma cells and two classes of insensitive clones: physical and DNA-binding properties. Proc. natl Acad. Sci. USA71 (1974) 3901–3905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yamamoto, K. R., Steroid receptor regulated transcription of specific genes and gene networks. A. Rev. Genet.19 (1985) 209–252.

    Article  CAS  Google Scholar 

  116. Yamamoto, K. R., A conceptual view of transcriptional regulation. Am. Zool.29 (1989) 537–547.

    Article  CAS  Google Scholar 

  117. Yura, T., and Ishihama, A., Genetics of bacterial RNA polymerases. A. Rev. Genet.13 (1979) 59–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schena, M. The evolutionary conservation of eukaryotic gene transcription. Experientia 45, 972–983 (1989). https://doi.org/10.1007/BF01953055

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01953055

Key words

Navigation