Experientia

, Volume 45, Issue 10, pp 965–972 | Cite as

Neural systems underlying photoperiodic time measurement: A blueprint

  • J. Herbert
Multi-author Review

Summary

This paper briefly reviews the formal properties of the photoperiodic time measurement apparatus of mammals and presents a hypothetical model for the operation of the neural systems responsible for reading and responding to the nocturnal pineal melatonin signal. The primary melatonin readout mechanism is held to be common to all species responsive to melatonin. It seems likely that this mechanism responds to relative changes in the duration and amplitude of the melatonin signal, rather than the absolute levels of melatonin encountered. A series of neural systems which exploit the calendar information provided by the primary readout is envisaged to vary between and within species, depending upon the neuroendocrine response under consideration. Of particular importance is a mechanism for comparing the relative duration of successive melatonin signals. These more complex elements are responsible for phenomena such as the effects of photopheriodic history and photorefractoriness. The brain may be able to encode an accumulated memory of melatonin signals and thereby define longer term intervals within the annual cycle. A series of response elements within the hypothalamus are engaged by the appropriately processed photoperiodic stimuli. For all elements of this model, their anatomical representations are poorly understood or, in certain cases, completely unknown.

Key words

Melatonin pineal hypothalamus photoperiodism neural times 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Bartness, T. J., and Goldman, B. D., Mammalian pienal melatonin: a clock for all seasons. Experientia45 (1989) 939–945.PubMedGoogle Scholar
  2. 2.
    Bittman, E., Hamster refractoriness: the role of insensitivity of pineal target tissues. Science202 (1978) 648–650.PubMedGoogle Scholar
  3. 3.
    Bittman, E., and Zucker, I., Photoperiodic termination of hamster refractoriness: participation of the pineal gland. Biol. Reprod.24 (1981) 568–572.PubMedGoogle Scholar
  4. 4.
    Bittman, E., Goldman, B. D., and Zucker, I., Testicular responses to melatonin are altered by lesions of the suprachiasmatic nuclei in golden hamsters. Biol. Reprod.21 (1979) 647–656.PubMedGoogle Scholar
  5. 5.
    Bonnefond, C., Walker, A. P., Stutz, J. A., Maywood, E., Juss, T. S., Herbert, J., and Hastings, M. H., The hypothalamus and photoperiodic control of FSH secretion by melatonin in the male Syrian hamster. J. Endocr.122 (1989) 247–254.PubMedGoogle Scholar
  6. 6.
    Cicero, T. J., Meyer, E. R., Bell, R. D., and Kock, G. A., Effect of morphine and methadone on serum testosterone and luteinising hormone levels and on the secondary sex organs of the male rat. Endocrinology98 (1976) 367–372.PubMedGoogle Scholar
  7. 7.
    Ebling, F. J. P., and Foster, D. L., Pineal melatonin rhythms and the timing of puberty in animals. Experientia45 (1989) 946–954.PubMedGoogle Scholar
  8. 8.
    Freeman, M. E., Smith, M. S., Nazian S. J., and Neill, J. D., Ovarian and hypothalamic control of the daily surges of prolactin secretion during pseudo-pregnancy in the rat. Endocrinology94 (1974) 875–882.PubMedGoogle Scholar
  9. 9.
    Glass, J. D., and Lynch, G. R., Melatonin: identification of sites of antigonadal action in mouse brain. Science214 (1981) 821–823.PubMedGoogle Scholar
  10. 10.
    Glass, J. D., Neuroendocrine regulation of seasonal reproduction by the pineal gland and melatonin. Pineal Res. Rev.6 (1988) 219–259.Google Scholar
  11. 11.
    Goss, R. J., Dinsmore, C. E., Grimes, L. N., and Rosen, J. K., Expression and suppression of the circannual antler growth cycle in deer, in: Circannual Clock, pp. 393–422. Ed. L. T. Pengelley. Academic Press, New York 1974.Google Scholar
  12. 12.
    Hastings, M. H., and Herbert, J., Endocrine rhythms, in: Neuroen-docrinology, pp. 42–102. Eds S. L. Lightman and B. J. Everitt. Blackwell Scientific Publications, 1986.Google Scholar
  13. 13.
    Hastings, M. H., Vance, G., and Maywood, E., Some reflections on the phylogeny and function of the pineal. Experientia45 (1989) 903–909.Google Scholar
  14. 14.
    Hastings, M. H., Walker, A. P., and Herbert, J., Effect of asymmetrical reductions of photoperiod on pineal melatonin, locomotor activity and gonadal condition of male Syrian hamsters. J. Endocr.114 (1987) 221–229.PubMedGoogle Scholar
  15. 15.
    Hastings, M. H., Walker, A. P., Powers, J. B., Hutchinson, J., Steel, E. A., and Herbert, J., Differential effects of photoperiodic history on the responsiveness of gonadotrophins and prolactin to intermediate day-lengths in the male Syrian hamster. J. biol. Rhythms4 (1989) in press.Google Scholar
  16. 16.
    Hastings, M. H., Walker, A. P., Roberts, A. C., and Herbert, J., Intrahypothalamic melatonin blocks photoperiodic responsiveness in the male Syrian hamster. Neuroscience24 (1988) 987–991.CrossRefPubMedGoogle Scholar
  17. 17.
    Herbert, J., and Vincent, D. S., Light and the breeding season in mammals. Excerpta med.273 (1973) 875–879.Google Scholar
  18. 18.
    Herbert, J., The pineal gland and the photoperiodic control of the ferret's reproductive cycle, in: Biological Clocks in Seasonal Reproductive, Cycles, pp. 261–276. Eds B. K. Follett and D. E. Follett. Wright, Bristol 1986.Google Scholar
  19. 19.
    Herbert, J., Light as a multiple control system on reproduction in mustelids, in: Conservation Biology and the Black-Footed Ferret, pp. 38–159. Eds U. S. Seal, E. T. Thorne, M. A. Bogan and S. H. Anderson. Yale Univ. Press, 1989.Google Scholar
  20. 20.
    Hoffman, K., Illnerova, H., and Vanacek, J., Change in duration of the night-time melatonin peak may be a signal driving the photoperiodic response in the Djungarian hamsterPhodopus sungorus sungorus. Neurosci. Lett.67 (1986) 68–72.CrossRefPubMedGoogle Scholar
  21. 21.
    Lincoln, G. A., and Ebling, F. J. P., Effect of constant-release implants of melatonin on seasonal cycles in reproduction, prolactin secretion and moulting in rams. J. Reprod. Fert.73 (1985) 241–253.Google Scholar
  22. 22.
    Malpaux, B., Robinson, J. E., Brown, M. B., and Karsch, F. J., Reproductive refractoriness of the ewe to inductive photoperiod is not caused by inappropriate secretion of melatonin. Biol. Reprod.36 (1987) 1333–1341.PubMedGoogle Scholar
  23. 23.
    Malpaux, B., Robinson, J. E., Brown, M. B., and Karsch, F. J., Importance of changing photoperiod and melatonin secretory pattern in determining the length of the breeding season in the Suffolk ewe. J. Reprod. Fert.83 (1988) 461–470.Google Scholar
  24. 24.
    Malpaux, B., Robinson, J. E., Wayne, N. L., and Karsch, F. J., Regulation of the onset of the breeding season of the ewe: importance of long days and of an endogenous reproductive rhythm. J. Endocr.122 (1989) 269–278.PubMedGoogle Scholar
  25. 25.
    Milligan, S. R., Khan, A. A., and Thorne, B. L., Delayed pseudopregnancy in the mouse. J. Reprod. Fert.60 (1980) 49–51.Google Scholar
  26. 26.
    Morgan, P. J., Lawson, W., Davidson, G., and Howell, H. E., Melatonin inhibits cyclic AMP production in cultured ovine pars tuberalis cells. J. molec. Endocr. (1989) in press.Google Scholar
  27. 27.
    Morgan, P. J., and Williams, L. M., Central melatonin receptors: Implications for a mode of action. Experientia45 (1989) 955–965.PubMedGoogle Scholar
  28. 28.
    Nicholls, T. J., Goldsmith, A. R., and Dawson, A., Photorefractoriness in birds and comparison with mammals. Physiol. Rev. 68 (1988) 133–175.PubMedGoogle Scholar
  29. 29.
    Niklowitz, P., and Hoffmann, K., Pineal and pituitary involvement in the photoperiodic regulation of body weight, coat color and testicular size of the Djungarian hamster,Phodopus sungorus. Biol. Reprod.39 (1988) 489–498.PubMedGoogle Scholar
  30. 30.
    Reiter, R. J., Petterborg, L. J., and Philo, R. C., Refractoriness to the antigonadotrophic effects of melatonin in male hamsters and its interruption by exposure of the animals to long daily photoperiods. Life Sci.25 (1979) 1571–1576.CrossRefPubMedGoogle Scholar
  31. 31.
    Roberts, A. C., Martensz, N. D., Hastings, M. H., and Herbert, J., Changes in the photoperiod alter the daily rhythm of pineal melatonin content, hypothalamic β-endorphin content and the LH response to naloxone in the male Syrian hamster. Endocrinology117 (1985) 141–148.PubMedGoogle Scholar
  32. 32.
    Ruh, M. F., and Ruh, T. S., Specificity of chromatin acceptor sites for steroid hormone receptors, in: Steroid Receptors and Disease, pp. 23–48. Eds P. J. Sheridan, K. Blum and M. C. Trachtenberg. Dekker, New York 1988.Google Scholar
  33. 33.
    Rusak, B., Suprachiasmatic lesions prevent an anti-gonadal effect of melatonin. Biol. Reprod.22 (1980) 148–154.PubMedGoogle Scholar
  34. 34.
    Silver, R., and Bittman, E. L., Reproductive mechanisms: interaction of circadian and interval timing. Ann. N. Y. Acad Sci.432 (1984) 488–514.Google Scholar
  35. 35.
    Smale, L., Nelson, R. J., and Zucker, I., Daylength influences pelage and plasma prolactin concentrations but not reproduction in the prairie vole,Microtus ochrogaster. J. Reprod. Fert.83 (1988) 99–106.Google Scholar
  36. 36.
    Stetson, M. H., Watson-Whitmyre, M., and Matt, K. S., Termination of photorefractoriness on golden hamsters-photoperiodic requirements. J. exp. Zool.202 (1977) 81–88.CrossRefPubMedGoogle Scholar
  37. 37.
    Thorpe, P. A., and Herbert, J., Studies on the duration of photorefractoriness in female ferrets pinealectomized or treated with melatonin. J. Endocr.70 (1976) 255–262.PubMedGoogle Scholar
  38. 38.
    Wayne, N. L., Malpaux, B., and Karsch, F. J., How does melatonin code for day length in the ewe: duration of nocturnal melatonin release or coincidence of melatonin with a light-entrained sensitive period? Biol. Reprod.39 (1988) 66–75.PubMedGoogle Scholar
  39. 39.
    Worthy, K., Haresign, W., Dodson, S., McLeod, B. J., Foxcroft, G. R., and Haynes, N. B., Evidence that the onset of the breeding season in the ewe may be independent of decreasing prolactin concentrations. J. Reprod. Fert.75 (1985) 237–246.Google Scholar
  40. 40.
    Zucker, I., and Morin, L. P., Photoperiodic influences on testicular regression, recrudescence and the unduction of scotorefractoriness in male golden hamsters. Biol. Reprod.17 (1977) 493–498.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1989

Authors and Affiliations

  • J. Herbert
    • 1
  1. 1.Department of AnatomyUniversity of CambridgeCambridgeEngland

Personalised recommendations