Experientia

, Volume 45, Issue 10, pp 922–932 | Cite as

Melatonin biosynthesis in the mammalian pineal gland

  • D. Sugden
Multi-author Review

Summary

Rhythmic production of melatonin by the mammalian pineal occurs in response to noradrenergic stimulation which produces a cascade of biochemical events within the pinealocyte. In the rat, massive changes in NAT activity result from an increase in intracellular c-AMP levels produced by a synergistic interaction whereby an α1 activation amplifies β-adrenergic stimulation. The intracellular events mediating this effect are described. A major aspect of the temporal control of melatonin production is the programmed down-regulation of responses to noradrenergic stimulation once the initial surge of c-AMP is produced. Noradrenergic activation of the gland also influences other enzymic functions, including tryptophan hydroxylase and HIOMT activities, and produces a dramatic increase in intracellular c-GMP levels. Other neurotransmitters and neuropeptides, e.g. VIP, may also influence pineal function and comparisons are, made between the rat, the subject of the bulk of experimental studies, and other species.

Key words

Melatonin adrenergic receptors second messengers serotonin N-acetyltransferase hydroxyndole-O-methyltransferase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Aloyo, V. J., and Walker, R. F., Noradrenergic stimulation of serotonin release from rat pineal glands in vitro. J. Endocr.114 (1987) 3–9.PubMedGoogle Scholar
  2. 2.
    Aloyo, V. J., and Walker, R. F., Alpha-adrenergic control of serotonin release from rat pineal glands. Neuroendocrinology48 (1988) 61–66.PubMedGoogle Scholar
  3. 3.
    Auerbach, D. A., Klein, D. C., Woodard, C., and Aurbach, G. D., Neonatal rat pinealocytes: typical and atypical characteristics of [125I]iodo hydroxybenzylpindolol binding and adenosine 3′,5′-monophosphate accumulation. Endocrinology108 (1981) 559–567.PubMedGoogle Scholar
  4. 4.
    Axelrod, J., and Weisbach, H., Enzymatic O-methylation of N-acetylserotonin to melatonin. Science131 (1960) 1312.PubMedGoogle Scholar
  5. 5.
    Axelrod, J., and Weissbach, H., Purification and properties of hydroxyindole-O-methyltransferase. J. biol. Chem.236 (1961) 211–213.PubMedGoogle Scholar
  6. 6.
    Balemans, M. G. M., Noordegraaf, E. M., Bary, F. A. M., and van Berto, M. F., Estimation of the methylating capacity of the pineal gland with special reference to indole metabolism. Experientia34 (1978) 887–888.PubMedGoogle Scholar
  7. 7.
    Bell, J. D., Buxton, I. L. O., and Brunton, L. L., Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters: putative effect of C kinase and αs-GTP-catalytic subunit interaction. J. biol. Chem.260 (1985) 2625–2628.PubMedGoogle Scholar
  8. 8.
    Binkley, S., Pineal biochemistry: Comparative aspects and circadian rhythms, in: The Pineal Gland I: Anatomy and Biochemistry, p. 155–172. Ed. R. J. Reiter. CRC Press, Florida 1981.Google Scholar
  9. 9.
    Buda, M., and Klein, D. C., A suspension culture of pinealocytes: regulation of N-acetyltransferase activity. Endocrinology103 (1978) 1483–1493.PubMedGoogle Scholar
  10. 10.
    Cardinali, D. P., Ritta, M. N., Pereyra, E., and Solveyra, C. G., Role of prostaglandins in rat pineal neuroeffector junction: Changes in melatonin and norepinephrine release in vitro. Endocrinology111 (1982) 530–534.PubMedGoogle Scholar
  11. 11.
    Cardinali, D. P., Ritta, M. N., Speziale, N., and Gimeno, M. F., Release and specific binding of prostaglandins in bovine pineal gland. Prostaglandins18 (1979) 577–590.CrossRefPubMedGoogle Scholar
  12. 12.
    Cardinali, D. P., and Wurtman, R. J., Hydroxyindole-O-methyltransferases in rat pineal, retina and harderian gland. Endocrinology91 (1972) 247–252.PubMedGoogle Scholar
  13. 13.
    Carter, D. S., and Goldman, B. D., Antigonadal effects of timed melatonin infusions in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus): duration is the critical parameter. Endocrinology113 (1983) 1261–1267.PubMedGoogle Scholar
  14. 14.
    Chan, A., and Ebadi, M., The kinetics of norepinephrine-induced stimulation of serotonin N-acetyltransferase in bovine pineal gland. Neuroendocrinology31 (1980) 244–251.PubMedGoogle Scholar
  15. 15.
    Chik, C. L., Ho, A. K., and Klein, D. C., α1-Adrenergic potentiation of vasoactive intestinal peptide stimulation of rat pineal adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate: evidence for a role of calcium and protein kinase C. Endocrinology122 (1988) 702–708.PubMedGoogle Scholar
  16. 16.
    Chik, C. L., Ho, A. K., and Klein, D. C., Dual receptor regulation of cyclic nucleotides: α1-adrenergic receptor potentiation of vasoactive intestinal peptide stimulation of pinealocyte adenosine 3′,5′-monophosphate. Endocrinology122 (1988) 1646–1651.PubMedGoogle Scholar
  17. 17.
    Craft, C. M., Morgan, W. W., Jones, D. J., and Reiter, R. J., Hamster and rat pineal gland β-adrenoceptor characterization with iodocyanopindolol and the effect of decreased catecholamine synthesis on the receptor. J. Pineal Res.2 (1985) 51–66.PubMedGoogle Scholar
  18. 18.
    Darmon, M. C., Grima, B., Cash, C. D., Maitre, M., and Mallet, J., Isolation of a rat pineal gland cDNA clone homologous to tyrosine and phenylalanine hydroxylases. FEBS Lett.206 (1986) 43–46.CrossRefPubMedGoogle Scholar
  19. 19.
    Deguchi, T., Tryptophan hydroxylase in pineal gland of rat: postsynaptic localization and absence of circadian change. J. Neurochem.28 (1977) 667–668.PubMedGoogle Scholar
  20. 20.
    Deguchi, T., and Barchas, J., Effect of p-chlorophenylalanine on hydroxylation of tryptophan in pineal and brain of rat. Molec. Pharmac.8 (1972) 770–779.Google Scholar
  21. 21.
    Deguchi, T., and Barchas, J., Effect of p-chlorophenylalanine on tryptophan hydroxylase in rat pineal. Nature235 (1972) 92–93.Google Scholar
  22. 22.
    Ebadi, M., and Govitrapong, P., Orphan transmitters and their receptor sites in the pineal gland. Pineal Res. Rev.4 (1986) 1–54.Google Scholar
  23. 23.
    English, J., Arendt, J., Poulton, A., and Symons, A. M., Short-term variations of circulating melatonin in the intact ewe. J. Pineal Res.4 (1987) 359–366.PubMedGoogle Scholar
  24. 24.
    Foldes, A., Hoskinson, R. M., Scaramuzzi, R. J., Hinks, N. T., and Maxwell, C. A., Modification of sheep pineal β-adrenoceptors by some gonadal steroids but not by melatonin. Neuroendocrinology37 (1983) 378–385.PubMedGoogle Scholar
  25. 25.
    Fuller, R. W., Increase of pineal noradrenealine concentration in rats by desipramine but not fluoxetine: implications concerning the specificity of these uptake inhibitors. J. Pharm. Pharmac.29 (1977) 710–711.Google Scholar
  26. 26.
    Fuxe, K., Agnati, L. F., Harfstrand, A., Jonson, A. M., Neumayer, A., Andersson, K., Ruggeri, M., Zoli, M., and Goldstein, M., Morphofunctional studies on the neuropeptide Y/adrenaline costoring terminal systems in the dorsal cardiovascular region of the medulla oblongata. Focus on receptor-receptor interactions in cotransmission, in: Progress in Brain Research, p.303–320. Eds T. Hokfelt, K. Fuxe and B. Pernow. Elsevier Science Publishers B.V., Amsterdam 1986.Google Scholar
  27. 27.
    Garrick, N. A., Tamarkin, L., Taylor, P. L., Markey, S. P., and Murphy, D. L., Light and propranolol suppress the nocturnal elevation of serotonin in the cerebrospinal fluid of rhesus monkeys. Science221 (1983) 474–476.PubMedGoogle Scholar
  28. 28.
    Ho, A. K., and Klein, D. C., Activation of α1-adrenoceptors, protein kinase C or treatment with intracellular free Ca2+ elevating agents increases pineal phospholipase A2 activity. J. biol. Chem.262 (1987) 11764–11770.PubMedGoogle Scholar
  29. 29.
    Ho, A. K., Cena, V., and Klein, D. C., Cardiac glycosides stimulate phospholipase C activity in rat pinealocytes. Biochem. biophys. Res. Commun.142 (1987) 819–825.CrossRefPubMedGoogle Scholar
  30. 30.
    Ho, A. K., Thomas, T. P., Chik, C. L., Anderson, W. B., and Klein, D. C., Protein kinase C: subcellular redistribution by increased Ca2+ influx. J. biol. Chem.263 (1988) 9292–9297.PubMedGoogle Scholar
  31. 31.
    Ichiyama, A., and Hasegawa, H., Activation by dithiothreitol and assay methods of bovine pineal tryptophan hydroxylase, in: Methods in Biogenic Amine Research, pp. 385–398. Eds S. Parvez, T. Nagatsu, I. Nagatsu and H. Parvez. Elsevier Science Publishers B.V., Amsterdam 1983.Google Scholar
  32. 32.
    Ishida, I., Obinata, M., and Deguchi, T., Molecular cloning and nucleotide sequence of cDNA encoding hydroxyindole-O-methyltransferase of bovine pineal glands. J. biol. Chem.262 (1987) 2895–2899.PubMedGoogle Scholar
  33. 33.
    Jackson, R. L., and Lovenberg, W., Isolation and characterisation of multiple forms of hydroxyindole-O-methyltransferase. J. biol. Chem.246 (1971) 4280–4285.PubMedGoogle Scholar
  34. 34.
    Juillard, M. T., and Collin, J. P., Pools of serotonin in the pineal gland of the mouse: the mammalian pinealocyte as a component of the diffuse neuroendocrine system. Cell Tiss. Res.213 (1980) 273–291.CrossRefGoogle Scholar
  35. 35.
    Kaku, K., Inoue, Y., Matsutani, A., Okubo, M., Hatao, K., Kaneki, T., and Yanaihara, N., Receptors for vasoactive intestinal polypeptide on rat dispersed pineal cells. Biomed. Res.4 (1983) 321–328.Google Scholar
  36. 36.
    Katada, T., Gilman, A. G., Watanabe, Y., Bauer, S., and Jakobs, K. H., Protein kinase C phosphorylates the inhibitory guanine-nucleotide binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur. J. Biochem.151 (1985) 431–437.CrossRefPubMedGoogle Scholar
  37. 37.
    King, T. S., and Steinlechner, S., Pineal indolealkylamine synthesis and metabolism: kinetic considerations. Pineal Res. Rev.3 (1985) 69–113.Google Scholar
  38. 38.
    Klein, D. C., Auerbach, D. A., Namboodiri, M. A. A., and Wheler, G. H. T., Indole metabolism in the mammalian pineal gland, in: The Pineal Gland I: Anatomy and Biochemistry, p. 199–227. Ed. R. J. Reiter. CRC Press, Florida 1981.Google Scholar
  39. 39.
    Klein, D. C., Auerbach, D. A., and Weller, J. L., Seesaw signal processing in pineal cells: homologous sensitization of adrenergic stimulation of cyclic GMP accompanies homologous desensitization of β-adrenergic stimulation of cyclic AMP. Proc. natl Acad. Sci. USA78 (1981) 4625–4629.PubMedGoogle Scholar
  40. 40.
    Klein, D. C., Buda, M. J., Kapoor, C. L., and Krishna, G., Pineal serotonin N-acetyltransferase activity: abrupt decrease in adenosine 3′,5′-monophosphate may be signal for ‘turnoff’. Science199 (1978) 309–311.PubMedGoogle Scholar
  41. 41.
    Klein, D. C., Sugden, D., and Weller, J. L., Postsynaptic α-adrenergic receptors potentiate the β-adrenergic stimulation of pineal serotonin N-acetyltransferase. Proc. natl Acad. Sci. USA80 (1983) 599–603.PubMedGoogle Scholar
  42. 42.
    Kuwano, R., and Takahashi, Y., A simple method for the preparation of the immunoglobulins to hydroxyindole-O-methyltransferase. J. Neurochem.31 (1978) 809–814.PubMedGoogle Scholar
  43. 43.
    Kuwano, R., Yoshida, Y., and Takahashi, Y., Purification of bovine pineal hydroxyindole-O-methyltransferase by immunoadsorption chromatography. J. Neurochem.31 (1978) 815–824.PubMedGoogle Scholar
  44. 44.
    Leeb-Lundberg, L. M. F., Cotecchia, S., De Blasi, A., Caron, M. G., and Lefkowitz, R. J., Regulation of adrenergic receptor function by phosphorylation I. Agonist-promoted desensitization and phosphorylation of α1-adrenergic receptors coupled to inositol phospholipid metabolism in DDT,MF-2 smooth muscle cells. J. biol. Chem.262 (1986) 3098–3105.Google Scholar
  45. 45.
    Lefkowitz, R. J., Benovic, J. L., Kobilka, B., and Caron, M. G., β-Adrenergic receptors and rhodopsin: shedding new light on an old subject. TIPS7 (1986) 444–448.Google Scholar
  46. 46.
    Lowenstein, P. R., and Cardinali, D. P., Benzodiazepine receptor sites in bovine pineal gland. Eur. J. Pharmac.86 (1983) 287–289.CrossRefGoogle Scholar
  47. 47.
    Lowenstein, P. R., and Cardinali, D. P., Characterization of flunitrazepam and β-carboline high affinity binding in bovine pineal gland. Neuroendocrinology37 (1983) 150–154.PubMedGoogle Scholar
  48. 48.
    Lowenstein, P. R., Rosenstein, R., Caputti, E., and Cardinali, D. P., Benzodiazepine binding sites in human pineal gland. Eur. J. Pharmac.106 (1984) 399–403.CrossRefGoogle Scholar
  49. 49.
    Mata, M. M., Schrier, B. K., Klein, D. C., Weller, J. L., and Chiou, C. L., On GABA function and physiology in the pineal gland. Brain Res.118 (1976) 383–394.CrossRefPubMedGoogle Scholar
  50. 50.
    Matthew, E., Parfitt, A. G., Sugden, D., Engelhardt, D. L., Zimmerman, E. A., and Klein, D. C., Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity. J. Pharmac. exp. Ther.228 (1984) 434–438.Google Scholar
  51. 51.
    Mefford, I. N., Chang, P., Klein, D. C., Namboodiri, M. A. A., Sugden, D., and Barchas, J., Reciprocal day/night relationship between serotonin oxidation and N-acetylation products in the rat pineal gland. Endocrinology113 (1983) 1582–1586.PubMedGoogle Scholar
  52. 52.
    Minneman, K. P., and Iversen, L. L., Diurnal rhythm in rat pineal cyclic nucleotide phosphodiesterase activity. Nature260 (1976) 59–61.PubMedGoogle Scholar
  53. 53.
    Moore, R. Y., The innervation of the mammalian pineal gland, in: The Pineal and Reproduction, p. 1–29, Ed. R. J. Reiter, S. Karger, Basel 1978.Google Scholar
  54. 54.
    Morgan, P. J., Williams, L. M., Lawson, W., and Riddoch, G., Stimulation of melatonin synthesis in ovine pineals in vitro. J. Neurochem.50 (1988) 75–81.PubMedGoogle Scholar
  55. 55.
    Morgan, P. J., Williams, L. M., Lawson, W., and Riddoch, G., Adrenergic and VIP stimulation of cyclic AMP accumulation in ovine pineals. Brain Res.447 (1988) 279–286.CrossRefPubMedGoogle Scholar
  56. 56.
    Nabika, T., Nara, Y., Yamori, Y., Lovenberg, W., and Endo, J., Angiotensin II and phorbol esters enhance isoproterenol- and vasoactive intestinal peptide-induced cyclic AMP accumulation in vascular smooth muscle cells. Biochem. biophys. Res. Commun.131 (1985) 30–36.PubMedGoogle Scholar
  57. 57.
    Nakane, M., Yokoyama, E., and Deguchi, T., Species heterogeneity of pineal hydroxyindole-O-methyltransferase. J. Neurochem.40 (1983) 790–796.PubMedGoogle Scholar
  58. 58.
    Namboodiri, M. A. A., Brownstein, M. J., Voisin, P., Weller, J. L., and Klein, D. C., A simple and rapid method for the purification of ovine pineal arylalkylamine N-acetyltransferase. J. Neurochem.48 (1987) 580–585.PubMedGoogle Scholar
  59. 59.
    Naboodiri, M. A. A., Brownstein, M. J., Weller, J. L., Voisin, P., and Klein, D. C., Multiple forms of arylalkylamine N-acetyltransferase in the rat pineal gland: purification of one molecular form. J. Pineal Res.4 (1987) 235–247.PubMedGoogle Scholar
  60. 60.
    Nukiwa, T., Tohyama, C., Okita, C., Kataoka, T., and Ichiyama, A., Purification and some properties of bovine pineal tryptophan 5-monooxygenase. Biochem. biophys. Res. Commun.60 (1974) 1029–1035.CrossRefPubMedGoogle Scholar
  61. 61.
    O'Dea, R. F., and Zatz, M., Catecholamine-stimulated cyclic GMP accumulation in the rat pineal: apparent presynaptic site of action. Proc. natl Acad. Sci. USA73 (1976) 3398–3402.PubMedGoogle Scholar
  62. 62.
    Olianas, M. C., and Onali, P., Phorbol esters increase GTP-dependent adenylate cyclase activity in rat brain striatal membranes. J. Neurochem.47 (1986) 890–897.PubMedGoogle Scholar
  63. 63.
    Reppert, S. M., and Klein, D. C., Mammalian pineal gland; basic and clinical aspects, in: The Endocrine Functions of the Brain, p. 327–371. Ed. M. Motta. Raven Press, New York 1980.Google Scholar
  64. 64.
    Reuss, S., and Schroeder, H., Neuropeptide Y effects on pineal melatonin synthesis in the rat. Neurosci. Lett.74 (1987) 158–162.CrossRefPubMedGoogle Scholar
  65. 65.
    Romero, J. A., Zatz, M., Kebabian, J. W., and Axelrod, J., Circadian cycles in binding of3H-alprenolol to β-adrenergic receptor sites in rat pineal. Nature258 (1975) 435–436.PubMedGoogle Scholar
  66. 66.
    Rozengurt, E., Murray, M., Zachary, I., and Collins, M., Protein kinase C activation enhances cAMP accumulation in Swiss 3T3 cells: inhibition by pertussis toxin. Proc. natl Acad. Sci. USA84 (1987) 2282–2286.PubMedGoogle Scholar
  67. 67.
    Saavedra, J. M., Brownstein, M., and Axelrod, J., Specific and sensitive enzymatic isotopic microassay for serotonin in tissues. J. Pharmac. exp. Ther.186 (1973) 508–515.Google Scholar
  68. 68.
    Schaad, N. C., Schorderet, M., and Magistretti, P. J., Prostaglandins and the synergism between VIP and noradrenaline in the cerebral cortex. Nature328 (1987) 637–640.CrossRefPubMedGoogle Scholar
  69. 69.
    Schrier, B. K., and Klein, D. C., Absence of choline acetyltransferase in rat and rabbit pineal gland. Brain Res.79 (1974) 347–351.CrossRefPubMedGoogle Scholar
  70. 70.
    Shein, H. M., and Wurtman, R. J., Stimulation of [14C-] tryptophan 5-hydroxylation by norepinephrine and dibutyryl adenosine 3′,5′-monophosphate in rat pineal organ cultures. Life Sci.10 (1971) 935–940.CrossRefGoogle Scholar
  71. 71.
    Shibuya, H., Toru, M., and Watanabe, S., A circadian rhythm of tryptophan hydroxylase in rat pineals. Brain Res.138 (1978) 364–368.CrossRefGoogle Scholar
  72. 72.
    Shiotani, Y., Yamano, M., Shiosaka, S., Emson, P. C., Hillyard, C. J., Girgis, S., and MacIntyre, I., Distribution of substance P (SP)-, calcitonin gene-related peptide (CGRP)-, vasoactive intestinal polypeptide (VIP)- and neuropeptide Y (NPY)-containing nerve fibres in the pineal gland of gerbils. Neurosci. Lett.70 (1986) 187–192.CrossRefPubMedGoogle Scholar
  73. 73.
    Sitaram, B. R., and Lees, G. J., Diurnal rhythm and turnover of tryptophan hydroxylase in the pineal gland of the rat. J. Neurochem.31 (1979) 1021–1026.Google Scholar
  74. 74.
    Sitaram, B. R., and Lees, G. J., Effects of oxygen on the induction of tryptophan hydroxylase by adrenergic agents in organ cultures of rat pineal glands. J. Neurochem.42 (1984) 1183–1185.PubMedGoogle Scholar
  75. 75.
    Smith, T. L., Eichberg, J., and Hauser, G., Postsynaptic localization of the alpha receptor-mediated stimulation of phosphatidylinositol turnover in pineal gland. Life Sci.24 (1979) 2179–2184.CrossRefPubMedGoogle Scholar
  76. 76.
    Steinlechner, S., King, T. S., Champney, T. H., Spanel-Borowski, K., and Reiter, R. J., Comparison of the effects of β-adrenergic agents on pineal serotonin, N-acetyltransferase activity and melatonin in two species of hamsters. J. Pineal Res.1 (1984) 23–30.PubMedGoogle Scholar
  77. 77.
    Sugden, D., Circadian change in rat pineal tryptophan content: lack of correlation with serum tryptophan. J. Neurochem.33 (1979) 811–813.PubMedGoogle Scholar
  78. 78.
    Sugden, D., Cena, V., and Klein, D. C., Hydroxyindole-O-methyltransferase. Meth. Enzymol.142 (1987) 590–596.PubMedGoogle Scholar
  79. 79.
    Sugden, D., Grady, R. Jr., and Mefford, I. N., Measurement of tryptophan hydroxylase activity in rat pineal glands and pinealocytes using an HPLC assay with electrochemical detection. J. Pineal Res.6 (1988) 285–292.Google Scholar
  80. 80.
    Sugden, D., Ho, A. K., Sugden, A. L., and Klein, D. C., Negative feedback mechanisms: evidence that desensitization of pineal α1-adrenergic responses involves protein kinase C. Endocrinology123 (1988) 1425–1432.PubMedGoogle Scholar
  81. 81.
    Sugden, D., and Klein, D. C., Regulation of rat pineal hydroxyindole-O-methyltransferase in neonatal and adult rats. J. Neurochem.40 (1983) 1647–1653.PubMedGoogle Scholar
  82. 82.
    Sugden, D., and Klein, D. C., Adrenergic stimulation of rat pineal hydroxyindole-O-methyltransferase. Brain Res.265 (1983) 348–351.CrossRefPubMedGoogle Scholar
  83. 83.
    Sugden, D., and Klein, D. C., β-Adrenergic receptor control of rat pineal hydroxyindole-O-methyltransferase. Endocrinology113 (1983) 348–353.PubMedGoogle Scholar
  84. 84.
    Sugden, D., and Klein, D. C., Rat pineal α1-adrenoceptors: identification and characterization using [125I]iodo-2-[β-(4-hydroxyphenyl)ethylaminomethyl]tetralone (125I-HEAT). Endocrinology114 (1984) 435–440.PubMedGoogle Scholar
  85. 85.
    Sugden, D., and Klein, D. C., A cholera toxin substrate regulates cyclic GMP content of rat pinealocytes. J. biol. Chem.262 (1987) 7447–7450.PubMedGoogle Scholar
  86. 86.
    Sugden, D., and Klein, D. C., Inactivation of rat pineal hydroxyindole-O-methyltransferase by disulfide-containing compounds. J. biol. Chem.262 (1987) 6489–6493.PubMedGoogle Scholar
  87. 87.
    Sugden, D., and Klein, D. C., Activators of protein kinase C act at a post-receptor site to amplify cyclic AMP production in rat pinealocytes. J. Neurochem.50 (1988) 149–155.PubMedGoogle Scholar
  88. 88.
    Sugden, D., Namboodirin, M. A. A., Klein, D. C., Grady, R. Jr, and Mefford, I. N., Ovine pineal indoles: effects of L-tryptophan or L-5-hydroxytryptophan administration. J. Neurochem.44 (1985) 769–772.PubMedGoogle Scholar
  89. 89.
    Sugden, D., Namboodiri, M. A. A., Klein, D. C., Pierce, J. E., Grady, R. Jr, and Mefford, I. N., Ovine pineal α1-adrenoceptors: characterisation and evidence for a functional role in the regulation of serum melatonin. Endocrinology116 (1985) 960–967.Google Scholar
  90. 90.
    Sugden, A. L., Sugden, D., and Klein, D. C., α1-Adrenoceptors activation elevates cytosolic calcium in rat pinealocytes by increasing net influx. J. biol. Chem.262 (1987) 741–745.PubMedGoogle Scholar
  91. 91.
    Sugden, D., Voisin, P., and Klein, D. C., Purification of rat pineal hydroxyindole-O-methyltransferase using S-adenosyl-L-homocysteine agarose chromatography. J. Pineal Res.3 (1986) 389–395.PubMedGoogle Scholar
  92. 92.
    Sugden, D., Vanecek, J., Klein, D. C., Thomas, T. P., and Anderson, W. B., Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature314 (1985) 359–361.CrossRefPubMedGoogle Scholar
  93. 93.
    Tamarkin, L., Baird, C. J., and Almeida, O. F. X., Melatonin: a coordinating signal for mammalian reproduction. Science227 (1985) 714–720.PubMedGoogle Scholar
  94. 94.
    Taylor, R. L., Alburquerque, M. L. C., and Burt, D. R., Muscarinic receptors in pineal. Life Sci.26 (1980) 2195–2200.CrossRefPubMedGoogle Scholar
  95. 95.
    Taylor, P. A., Garrick, N. A., Tamarkin, L., Murphy, D. L., and Markey, S. P., Diurnal rhythms of N-acetylserotonin and serotonin in cerebrospinal fluid of monkeys. Science228 (1985) 900.PubMedGoogle Scholar
  96. 96.
    Uddman, R., Malm, L., and Sundler, F., Vasoactive intestinal peptide (VIP) occurs in nerves of the pineal gland. Experientia36 (1980) 1119–1120.PubMedGoogle Scholar
  97. 97.
    Vacas, M. I., Sarmiento, I. K., and Cardinali, D. P., Interaction between β- and α-adrenoceptors in rat pineal adenosine cyclic 3′,5′-monophosphate phosphodiesterase activation. J. neural Trans.26 (1985) 295–304.CrossRefGoogle Scholar
  98. 98.
    Vanecek, J., Sugden, D., Weller, J. L., and Klein, D. C., Atypical synergistic α1 and β-adrenergic regulation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in rat pinealocytes. Endocrinology116 (1985) 2167–2173.PubMedGoogle Scholar
  99. 99.
    Vanecek, J., Sugden, D., Weller, J. L., and Klein, D. C., Seesaw signal processing in pinealocytes involves reciprocal changes in the α1-adrenergic component of the cyclic GMP response and the β-adrenergic component of the cyclic AMP response. J. Neurochem.47 (1986) 678–686.PubMedGoogle Scholar
  100. 100.
    Vaughan, G. M., Bell, R., and de la Pena, A., Nocturnal plasma melatonin in humans: episodic pattern and influence of light. Neurosci. Lett.14 (1979) 81–84.CrossRefPubMedGoogle Scholar
  101. 101.
    Voisin, P., Namboodiri, M. A. A., and Klein, D. C., Arylamine N-acetyltransferase in the mammalian pineal gland. J. biol. Chem.259 (1984) 10913–10918.PubMedGoogle Scholar
  102. 102.
    Voisin, P., Goldman, D., Weller, J. L., Merril, C. R., and Klein, D. C., Identification of an adrenergically induced protein (AIP37K/5.8) in the rat pineal gland. J. Steroid Biochem.20, 6B (1984) D57.CrossRefGoogle Scholar
  103. 103.
    Weissman, B. A., Skolnick, P., and Klein, D. C., Regulation of ‘peripheral-type’ binding sites for benzodiazepines in the pineal gland. Pharmac. Biochem. Behav.21 (1984) 821–824.Google Scholar
  104. 104.
    Yang, H-Y. T., and Neff, N. H., Hydroxyindole-O-methyltransferase: an immunochemical study of the neuronal regulation of the pineal enzyme. Molec. Pharmac.12 (1976) 433–439.Google Scholar
  105. 105.
    Young, S. N., and Anderson, G. M., Factors influencing melatonin, 5-hydroxytryptophan, 5-hydroxyindoleacetic acid, 5-hydroxytryptamine and tryptophan in rat pineal gland. Neuroendocrinology35 (1982) 464–468.PubMedGoogle Scholar
  106. 106.
    Yuwiler, A., Vasoactive intestinal peptide stimulation of serotonin N-acetyltransferase activity: general characteristics. J. Neurochem.41 (1983) 146–153.PubMedGoogle Scholar
  107. 107.
    Yuwiler, A., Synergistic action of postsynaptic α1-adrenergic receptor stimulation on vasoactive intestinal polypeptide-induced increases in pineal N-acetyltransferase activity. J. Neurochem.49 (1987) 806–811.PubMedGoogle Scholar
  108. 108.
    Zatz, M., Phorbol esters mimic α1-adrenergic potentiation of serotonin N-acetyltransferase induction in the rat pineal. J. Neurochem.45 (1985) 637–639.PubMedGoogle Scholar
  109. 109.
    Zatz, M., Denervation supersensitivity of the rat pineal to norepinephrine-stimulated [3H]inositide turnover revealed by lithium and a convenient procedure. J. Neurochem.45 (1985) 95–100.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1989

Authors and Affiliations

  • D. Sugden
    • 1
  1. 1.Division of Biomedical SciencesKing's College LondonLondon(England)

Personalised recommendations