Advertisement

Experientia

, Volume 50, Issue 7, pp 626–640 | Cite as

Zinc, copper and selenium in reproduction

  • R. S. Bedwal
  • A. Bahuguna
Reviews

Abstract

Of the nine biological trace elements, zinc, copper and selenium are important in reproduction in males and females. Zinc content is high in the adult testis, and the prostate has a higher concentration of zinc than any other organ of the body. Zinc deficiency first impairs angiotensin converting enzyme (ACE) activity, and this in turn leads to depletion of testosterone and inhibition of spermatogenesis. Defects in spermatozoa are frequently observed in the zinc-deficient rat. Zinc is thought to help to extend the functional life span of the ejaculated spermatozoa. Zinc deficiency in the female can lead to such problems as impaired synthesis/secretion-of (FSH) and (LH), abnormal ovarian development, disruption of the estrous cycle, frequent abortion, a prolonged gestation period, teratogenicity, still-births, difficulty in parturition, pre-eclampsia, toxemia and low birth weights of infants. The level of testosterone in the male has been suggested to play a role in the severity of copper deficiency. Copper-deficient female rats are protected against mortality due to copper deficiency, and the protection has been suggested to be provided by estrogens, since estrogens alter the subcellular distribution of copper in the liver and increase plasma copper levels by inducing ceruloplasmin synthesis. The selenium content of male gonads increases during pubertal maturation. Selenium is localized in the mitochondrial capsule protein (MCP) of the midpiece. Maximal incorporation in MCP occurs at steps 7 and 12 of spermatogenesis and uptake dereases by step 15. Selenium deficiency in females results in infertility, abortions and retention of the placenta. The newborns from a selenium-deficient mother suffer from muscular weakness, but the concentration of selenium during pregnancy does not have any effect on the weight of the baby or length of pregnancy. The selenium requirements of a pregnant and lactating mother are increased as a result of selenium transport to the fetus via the placenta and to the infant via breast milk.

Key words

Male reproduction female reproduction zinc selenium copper pregnancy parturition lactation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbasi, A. A., Prasad, A. S., Rabbani, P., and DuMouchelle, E., Experimental Zinc deficiency in man: Effect on testicular function. J. Lab. clin Med.96 (1980) 544–550.Google Scholar
  2. 2.
    Aitken, J. M., Lindsay, R., and Hart, D. M., Plasma Zinc in pre-and post-menopausal women: its relationship to oestrogen therapy. Clin Sci.44 (1973) 91–94.Google Scholar
  3. 3.
    Anke, M., and Groppel, B., Nutricni nezbytnost sirsho spektra stopovych prvku. Cast ii S. pp. 191–200, in: Sbor, Knof. Biologicke aspekty vysoke produkce mleka, C., Budejoviece, Cerven 1985.Google Scholar
  4. 4.
    Anttila, P., Salmela, S., Lehto, J., and Simell, O., Serum zinc. copper and selenium concentrations in healthy mothers during pregnancy, puerperium and lactation: A longitudinal study, in: Vitamins and Minerals in Pregnancy and Lactation. Nestle Nutr, Workshop Ser., 16 Ed. H. Berger. Nestle Ltd. (Vevey). Raven Press, Ltd., New York 1988.Google Scholar
  5. 5.
    Apgar, J., Zinc and reproduction. A. Rev. Nutr.5 (1985) 43–46.Google Scholar
  6. 6.
    Apgar, J., Zinc and reproduction: An update. J. Nutr. Biochem.3 (1992) 266–278.Google Scholar
  7. 7.
    Arslan, M., Haider, M. Z., and Quazi, M. H., Characterization and androgen dependence of specific proteins in the epididymis of a adult Rhesus monkey. (Macaca mulatta). Archs Androl.16 (1986) 67–74.Google Scholar
  8. 8.
    Baccetti, B., Pallini, V., and Burrini, A. G., The accessory fibers of sperm tail. II. Their role in binding zinc in mammals and cephalopods. J. Ultrastruct. Res.54 (1976a). 261–275.Google Scholar
  9. 9.
    Baccetti, B., Pallini, V., and Burrini, A. G., The accessory fibers of sperm. III. High sulfur and low sulfur components in mammals and cephalopods. J. Ultrastruct. Res.57 (1976b) 289–303.Google Scholar
  10. 10.
    Bako, G., Smith, E. S. O., Hanson, J., and Dewar, R., Can. J. Publ. Hlth.73 (1982) 92–94. Cited from: Webber, M. M., Emilla, A., Perez-Ripoll, E., and James, G. T., Inhibitory effects of selenium on the growth of DU-145 Human prostate carcinoma cells in vitro. Biochem. biophys. Res. Commun.130 (1985) 603–609Google Scholar
  11. 11.
    Baudier, J., and Gerard, D., Ions binding to S-100 proteins: Structural changes induced by calcium and zinc on S-100a and S-100b proteins. Biochemistry22 (1983) 2260–3369.Google Scholar
  12. 12.
    Beach, R. S., Gershwin, M. E., and Hurley, L. S., Growth and development in postnatally zinc deprived mice. J. Nutr.110 (1980) 201–211.Google Scholar
  13. 13.
    Beach, R. S., Gershwin, W. E., Makishima, R. K., and Hurley, L. S., Impaired immunologic ontogeny in postnatal zinc deprivation. J. Nutr.110 (1981) 805–815.Google Scholar
  14. 14.
    Beach, R. S., Gershwin, M. E., and Hurley, L. S., Gestational zinc deprivation in mice: Persistence of immunodeficiency for three generations, Science218 (1982) 469–471.Google Scholar
  15. 15.
    Beach, R. S., Gershwin, M. E., and Hurley, L. S., Persistent immunological consequences of gestational zinc deprivation. Am. J. clin. Nutr.38 (1983) 579–590.Google Scholar
  16. 16.
    Bedwal, R. S., Nair, N., and Mathur, R. S., Effects of zinc deficiency and toxicity on reproductive organs, pregnancy and lactaion-a review. Trace Elem. Med.8 (1991) 89–100.Google Scholar
  17. 17.
    Bedwal, R. S., Nair Neena, Mathur, R. S., and Sharma, M. P. Selenium-its biological prospectives. Med. Hypoth.41 (1993) 150–159.Google Scholar
  18. 18.
    Behne, D., Hofer-Bosse, T., Wallrabe, R. V. B., and Elger, W., Selenium in the testis of the rat: Studies on its regulation and its importance for the organism. J. Nutr.112 (1982) 1682–1687.Google Scholar
  19. 19.
    Behne, D., Duk, M., and Elger, W., Selenium content and glutathione peroxidase activity in the testis of the maturing rat. J. Nutr.116 (1986a) 1442–1447.Google Scholar
  20. 20.
    Behne, D., Hofer-Bosse, T., and Elger, W., Studies on the regulation and functions of selenium in the testis of the rat, in: 5. Spurenelement Symposium B, Cr, Co, Cu, F, Fe, Mn, Se, Zn., pp. 667–673. Eds. M. Anke, W. Bauman and H. Braiinlich, Karl-Marx-Universität, Leipzig, Friedrich-Schiller-Universität, Jena, Germany 1986b.Google Scholar
  21. 21.
    Berg, J. M., Potential metal binding domains in nucleic acid binding proteins. Science232 (1988) 485–486.Google Scholar
  22. 22.
    Bertrand, G., Vladesco R., and Hebd, C. R., Intervention probable du zinc dans les phenomenes de fecondation chez les animaux vertebres, C. r. Séanc. Soc. Biol. Fil.173 (1921) 176–180.Google Scholar
  23. 23.
    Bettger, W. J., Reeves, P. G., Savage, J. E., and O'Dell, B. L., Interaction of zinc and vitamin E in the chick. Proc. Soc. expl. Biol. Med.163 (1980) 432–436.Google Scholar
  24. 24.
    Briggs, M. H., Briggs, M., and Austin, J., Effects of steroid pharmaceuticals on plasma zinc. Nature232 (1971) 480–482.Google Scholar
  25. 25.
    Brooke, D. E., Effect of androgens on protein synthesis and secretion in various regions of the rat epididymis, as analysed by two dimensional gel electrophoresis. Molec. cell. Endocr.29 (1983) 255–270Google Scholar
  26. 26.
    Brooks, D. E., and Higgns, S. J., Characterization and androgen-dependence of proteins associated with luminal fluid and spermatozoa in the rat epididymis. J. Reprod. Fert.59 (1980) 363–373.Google Scholar
  27. 27.
    Brooksbank, R. W. L., and Balazs, R., Superoxide dismutase and lipoperoxidation in Down's syndrome fetal brain. Lancet1 (1983) 881–882.Google Scholar
  28. 28.
    Brown, D. G., and Burk, R. F., Selenium retention in tissues and sperm, of rats fed a Torula yeast diet. J. Nutr.103 (1973) 102–108.Google Scholar
  29. 29.
    Buamah, P. K., Russell, M., Bates, G., and Melfordward, A., Maternal zinc status: A determination of central nervous system malformation. Br. J. Obstet. Gynaec.91 (1984) 788–790.Google Scholar
  30. 30.
    Budzik, G. P., Huston, J. M., Ikawa, H., and Donahoe, P. K., The role of zinc in Mullerian Duct regression. Endocrinology110 (1982) 1521–1525.Google Scholar
  31. 31.
    Bull, J. J., Hillis, D. M., and O'Steen, S., Mammalian ZFY sequences exist in reptiles regardless of sex determining mechanism. Science242 (1988) 567–569.Google Scholar
  32. 32.
    Burke, R. F., Brown, D. G., Seely, R. J., and Scaieff, C. C., Influence of dietary and injected selenium on whole body retention, route of excretion and tissue retention of75SeO32− in the rat. J. Nutr.102 (1972) 1049–1056.Google Scholar
  33. 33.
    Butler, J. A., Whanger, P. D., and Patton, N. M., Effect of feeding selenium deficient diets to rhesus monkeys (Macaca mulatta). J. Am. Coll. Nutr.7 (1988) 43–56.Google Scholar
  34. 34.
    Buttlaire, D. H., Czuba, B. A., Stevens, T. H., Lee, Y. C., and Himes, R. H., Manganous ion binding to tubulin. J. biol. Chem.255 (1980) 2164–2168.Google Scholar
  35. 35.
    Byar, P. D., Zinc in male accessory organs: Distribution and hormonal response, in: Male Accessory Organ: Structure and Function in Mammals, pp. 161–171. Ed D. Brandes. Academic Press, New York, San Francisco, London 1974.Google Scholar
  36. 36.
    Beyers, P. H., Sicgel, R. C., Holbrook, K. A., Narayanan, A. S., Bornstein, P., and Hall, J. G., X-linked cutis laxa. New Engl. J. Med.303 (1980) 61–65.Google Scholar
  37. 37.
    Calvin, H. I., Selective incorporation of selenium75 into a polypeptide of the rat sperm tail. J. expl. Zool.204 (1978) 445–451.Google Scholar
  38. 38.
    Calvin, H. I., Cooper, G. W., and Wallace, E. W., Evidence that selenium in rat sperim is associated with a cysteine-rich structural protein of the mitochondrial capsule. Gamete Res.4 (1981) 139–149.Google Scholar
  39. 39.
    Calvin, H. I., Grosshans, K., Mussicant-Shikora, S. R., and Turner, S. I., A developmental study of rat sperm and testis selenoproteins. J. Reprod. Fert.81, (1987) 1–11.Google Scholar
  40. 40.
    Calvin, H. I., Hwang, F. H. F., and Wohlrab, H., Localization of zinc in a dense fiber connecting piece fraction of rat sperm tails analogous chemically to hair keratin. Biol. Reprod.13 (1975) 228–239.Google Scholar
  41. 41.
    Calvin, H. I., Wallace, E. W., and Cooper, G. W., Role of selenium in the organization of the mitochondrial sheath in rodent, spermatozoa, in: Selenium in Biology and Medicine, pp. 319–324. Eds J. E. Spallholz, J. L. Martin and H. E. Ganther. Avi Publ. Co. Inc., Westport, Ireland 1981.Google Scholar
  42. 42.
    Cannon, J. G., and Dinarello, C. A., Increased plasma interleukin-1 activity in women after ovulation. Science227 (1984) 1247–1249.Google Scholar
  43. 43.
    Carlson, J. C., Buhr, M. M., Wentworth, R., and Hansel, W., Evidence of membrane changes during regression in the bovine corpus luteum. Endocrinology110 (1982) 1472–1476.Google Scholar
  44. 44.
    Carreras, A., and Mendoza, C., Zinc levels in seminal plasma of fertile and infertile men. Andrologia22 (1990) 279–283.Google Scholar
  45. 45.
    Carruthers, M. E., Hobbs, C. B., and Warren, R. L., Raised serum copper and ceruloplasmin levels in subjects taking oral contraceptives. J. Clin. Pathol.19 (1966) 498–504.Google Scholar
  46. 46.
    Casey, C. E., Hambidge, K. M., and Neville, M. C., Studies in human lactation: zinc, copper, manganese and chromium in human milk in the first month of lactation. Am. J. clin. Nutr.41 (1985) 1193–1200.Google Scholar
  47. 47.
    Cater, B. R., Cook, M. W., Gangolli, S. D., and Grasso, P., Studies on dibutyl phthalate induced testicular atrophy in rats: Effects on zinc metabolism. Toxic. appl. Pharmac.41 (1977) 609–618.Google Scholar
  48. 48.
    Cavazos, L. F., Effect of testosterone propionate on histochemical reactions of epithelium of rat ductus epididymis. Anat. Rec.132 (1958) 209–211.Google Scholar
  49. 49.
    Cavdar, A. O., Arcasoy, A., Baycu, T., and Himmetoglu, O., Zinc deficiency and anencephaly in Turkey. Tertology22 (1977) 141–147.Google Scholar
  50. 50.
    Chan, W. Y., Bates, J. M. Jr., Chung, K. W., and Rennert, O. M., Abnormal zinc metabolism in unilateral maldescended testes of a mutant rat strain. Proc. Soc. expl. Biol. Med.182 (1986) 549–558.Google Scholar
  51. 51.
    Chapman, D., Peel, W. E., Kingston, B., and Lilley, T. H., Lipid phase transitions in model biomembranes: The effect of ions on phosphatidylcholine bilayers. Biochim. biophys. Acta464 (1977) 260–275.Google Scholar
  52. 52.
    Cherry, F. F., Bennet, E. A., and Bazzano, G. S., Plasma zinc in hypertension/toxemia and other reproductive variables in adolescent pregnancy. Am. J. clin. Nutr.34 (1981) 2367–2369.Google Scholar
  53. 53.
    Chisolm, J. C., and Handorf, C. R., Zinc, cadmium, metallothionein and progesterone: Do they participate in the etiology of pregnancy induced hypertension? Med. Hypoth.17 (1985) 231–234.Google Scholar
  54. 54.
    Chooi, M. K., Todd, J. K., and Boyd, N. D., Influence of age and sex on plama zinc levels in normal and diabetic individuals. Nutr. Metabl.20 (1976) 135–142.Google Scholar
  55. 55.
    Cohary, M. E., Cavazos, L. F., and Manning, J. P., Effects of testosterone on histochemical reactions of epithelium of hamster dutus epididymis and seminal vesicle. Anat. Rec.14F (1962) 229–238.Google Scholar
  56. 56.
    Cohen, D. I., Illowsky, B., and Linder, M. C., Altered copper absorption in tumor bearing and estrogen treated rats. Am. J. Physiol.236 (1979) E309-E311.Google Scholar
  57. 57.
    Coleman, J. E., The role of zinc (II) in RNA and DNA polymerases, in: Metal ions in Biology. Zinc Enzymes, Vol. 5, pp. 219–252. Ed T. Spiro, Wiley, New York 1983.Google Scholar
  58. 58.
    Comb, G. F. Jr., and Clark, L. C., Can dietary selenium modify cancer risk? Nutr. Rev.43 (1985) 325–331.Google Scholar
  59. 59.
    Courtney-Moore, M. E., Moran, J. R., and Greene, H. L., Zinc supplementation in lactating women: Evidence for mammary control of zinc secretion. J. Pediat.105 (1984) 600–603.Google Scholar
  60. 60.
    Crews, M. G., Taper, L. J., and Ritchey, S. J., Effect of oral contraceptice agents on copper and zinc balance in young women. Am. J. clin. Nutr.33 (1980) 1940–1944.Google Scholar
  61. 61.
    Cunnane, S. C., Horrobin, D. F., and Manku, M. S., Essential fatty acids in tissue phospholipids and triglycerides on zinc deficient rat. Proc. Soc. expl Biol. Med.177 (1984) 441–446.Google Scholar
  62. 62.
    Cushman, D. W., and Cheung, H. S., Concentration of angiotensin converting enzyme in tissues of the rat. Biochim. biophys. Acta.50 (1971) 261–265.Google Scholar
  63. 63.
    Danielsen, M., Hinck, L., and Ringold, G. M. Two amino acids within the knuckle of the first zinc finger specify DNA response element activation by the glucocorticoid receptor. Cell57 (1989) 1131–1138.Google Scholar
  64. 64.
    Danks, D. M., Hereditary disorders of copper metabolism in Wilson's disease and Menkes's disease, in: The Metabolic Basis of Inherited Disease, 5th ed., pp. 1251–1268. Eds J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown. McGraw Hill, New York 1983.Google Scholar
  65. 65.
    Danks, D. M., Campell P. E., Walker-Smith, J., Stevens, B. J., Gillespie, J. M., and Blomfield, J., Menkes' Kinky-hair syndrome. Lancet1 (1972) 1100–1103.Google Scholar
  66. 66.
    Das, R. P., Roy, S., and Poddar, A. K., Relation of phosphatase in human semen to sperm count and motility. Indian J. med. Res.63 (1975) 1323–1327.Google Scholar
  67. 67.
    Davies, N. T., and Williams, R. B., The effect of pregnancy on uptake and distribution of copper in the rat. Proc. nutr. Sci. USA35 (1976) A4.Google Scholar
  68. 68.
    Deuster, P. A., Dolev, E., Bernier, L. L., and Trostmann, U. H., Magnesium and zinc status during the menstrual cycle. Am. J. Obstet. Gynec.154, (1987) 964–968.Google Scholar
  69. 69.
    Dhanda, O. P., Rao, B. R., and Razdan, M. N., Sorbitol dehydrogenase and Hyaluronidase activity in buffalo semen. Indian J. expl. Biol.19 (1981) 286–289.Google Scholar
  70. 70.
    DeLa Chappelle, A., Nature and origin of males with XX-sex chromosomes. Am. J. hum. Genet.24 (1972) 71–105.Google Scholar
  71. 71.
    Dinsdale, D., and Williams, R. B., Ultrastructural changes in the sperm tail of zinc deficient rats. J. comp. Path.90 (1980) 559–566.Google Scholar
  72. 72.
    Donangelo, C. M., Zinc status of nursing mother and weight adequancy of their newborn babies. Nutr. Rep. Int.30 (1984) 1157–1163.Google Scholar
  73. 73.
    Dreosti, I. E., Grey, P. G., and Wilkins, P. T., Deoxyribonucleic acid synthesis, protein synthesis and teratogenesis in zinc deficient rats. S. Afr. med. J.46 (1972) 1585–1588.Google Scholar
  74. 74.
    Dreosti, I. E., McMichael, A. J., Gibson, G. T., Buckley, R. A., Harsttone J. M., and Colley, D. P., Nutr. Res.2 (1982) 591–594. Cited from Mas, A., Romeu, M., Arola, L. L., Iron, zinc and copper content in the tissues of the rat during pregnancy. Biol. Trace Elem. Res.8 (1985) 105–111.Google Scholar
  75. 75.
    Dressler, G. R., and Gruss, P., Do multigene families regulate vertebrate development? Trends Genet.4 (1988) 214–219.Google Scholar
  76. 76.
    Dura-Trave, T., Puig-Abuli, M., Monreal, I., and Villa-Elizaga, I., Relation between maternal plasmatic zinc levels and uterine contractility. Gynaec. Obstet. Invest.17 (1984) 247–251.Google Scholar
  77. 77.
    Dylewsky, D. P., Lytton, F. D. C., and Bunce, G. E., Dietary zinc and parturition in the rat II Myometrial gap junctions. Biol. Trace Elem. Res.9 (1986) 165–175.Google Scholar
  78. 78.
    Eagle, G. R., Zombola, R. R., and Himes, R. H., Tubulin zinc interactions: Binding and polymerization studies. Biochemistry22 (1983) 221–228.Google Scholar
  79. 79.
    Edman, J., Sobel, J. D., and Taylor, M. L., Zinc status in women with recurrent vulvovaginal candidiasis. Am. J. Obstet. Gynec.155 (1986) 1082–1085.Google Scholar
  80. 80.
    Edmund, T. S. L., and O'Dell, B. L., Effect of zinc status on the binding of prostaglandins to ovarian membranes and intact platelets of pregnant rats. J. Nutr.116 (1986) 1448–1455.Google Scholar
  81. 81.
    Eliasson, R. S., Semen analysis, in: Progress in Infertility, p. 675. Ed S. J. Berman and S. J. Kistner. Litte Brown and Co., Boston 1975.Google Scholar
  82. 82.
    Elliasson, R., and Virgi, N., LDH-C4 in human seminal plasma and its relatioship to testicular function. II. Clinical aspects. Int. J. Andol.8 (1985) 201–203.Google Scholar
  83. 83.
    Evans, G. W., Cornatzer, N. F., and Cornatzer, W. E., Mechanism for hormone induced alternations in serum ceruloplasmin. Am. J. Physiol.218 (1970) 613–618.Google Scholar
  84. 84.
    Evans, R. M., and Hollenberg, S. M., Zinc fingers: Gilt by association. Cell52 (1988) 1–3.Google Scholar
  85. 85.
    Fairweather-Tait, S. J., wright, A. J. A., Cooke, J., and Franklin, J., Studies of zinc metabolism in pregnant and lactating rats. Br. J. Nutr.54 (1985) 401–413.Google Scholar
  86. 86.
    Falchuk, K. H., Mazus, B., Ber, E., Ulpino-Lobb, L., and Vallee, B. L., Zinc deficiency and theE. gracilus chromatin: Formation of an alpha-amanitin resistant RNA polymerase II. Biochemistry24 (1985) 2576–2580.Google Scholar
  87. 87.
    Feller, D. J., and O'Dell, B. L., Dopamine and norepinephrine in discrete areas of copper deficient rat brain. J. Neurochem.34 (1980) 1259–1261.Google Scholar
  88. 88.
    Ferrer, X., and Moreno, J. J., Effects of copper, iron and zinc on oedema formation induced by phospholipase-A2. Comp Biochem. Physiol.102C (1991) 325–327.Google Scholar
  89. 89.
    Fields, M., Charles, G., Todd, B., Daniel, S., Kristine, P., James, S. M., and Sheldon, R., Sexual differences in the expression of copper deficiency in rats. Proc. Soc. expl Biol. Med.186 (1987) 183–187.Google Scholar
  90. 90.
    Fields, M., Lewis, C., Scholfield, D., Powel, A. S., Rose, A. J., Reiser, S., and Smith, J. C., Female rats are protected against the fructose-induced mortality of copper deficiency. Proc. Soc. exp. Biol. Med.186 (1986) 145–149.Google Scholar
  91. 91.
    Flickinger, C. J., Regional differences in synthesis, intracellular transport and secretion of protein in the mouse epidydymis. Biol. Reprod.25 (1981) 871–883.Google Scholar
  92. 92.
    Flynn, A., Estrogen modulation of blood copper and other essential metal concentrations, in: Inflammatory Diseases and Copper. Ed J. R. Sorensen. Humana Press, Clifton, New Jersey 1982.Google Scholar
  93. 93.
    Foster, P. M. D., Thomas, L. V., Cook, M. W., and Gangolli, S. D., Study of the testicular effects and the changes in zinc excretion produced by some n-alkyl phthalate in the rat. Toxic. appl. Pharmac54 (1980) 392–398.Google Scholar
  94. 94.
    Fransworth, W., Physiology and biochemistry, in: Scientific foundations of Urology, pp 126–137. Eds G. Chisholm and I. Williams. William Heineman Medical Books, Ltd., London 1982.Google Scholar
  95. 95.
    Freedman, L. P., Luisi, B. F., Korzun, Z. R., Basavappa, R., Sigler, R. B., and Yamamoto, K. R., the function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. Nature334 (1988) 543–546.Google Scholar
  96. 96.
    Gangolli, S. D., testicular effects of phthalate esters. Environ. Health Perspect.45 (1982) 77–84.Google Scholar
  97. 97.
    Garfield, R. E., Kannan, M. S., and Daniel, E. E.. Gap junctions formation in myometrium: Control of estrogens, progesterone, and prostaglandins. Am. J. Physiol.238 (1980) C81–89.Google Scholar
  98. 98.
    Garfield, R. E., Sims S., and Daniel, E. E. Gap junctions: Their presence and necessity in myometrium during parturition Science198 (1977) 958–959.Google Scholar
  99. 99.
    Gaskin, F., and Kress, Y., Zinc ion induced assembly of tubulin. J. biol. Chem.252 (1977) 6918–6924.Google Scholar
  100. 100.
    Gibson, T., Postma, J., Brown, R., and Argos, P., A model for the tertiary structure of the 28 residue cDNA binding motif (zinc finger) common to many eukaryotic transcription regulatory proteins. Protein Eng.2 (1988) 209–218.Google Scholar
  101. 101.
    Ginsberg, A. M., King, B. O., and Roeder, R. G., Xenopus 5S transcription factor TF III A: Characteristics of a DNA clone and measurement of RNA levels throughout development. Cell39 (1984) 479–489.Google Scholar
  102. 102.
    Giroux, E., Schechter, P. J., and Schoun, J., Diminished albumin binding of zinc in serum of pregnant women. Clin. Sci. molec. Med.51 (1976) 545–549.Google Scholar
  103. 103.
    Gombe, S., Apgar, J., and Hansel, W., Effect of zinc deficiency and restricted food intake on plasma and pituitary LH and hypothalamic LRF in female rats. Biol. Reprod.9 (1973) 415–419.Google Scholar
  104. 104.
    Green, S., and Gould, T. C., Nuclear receptors enhance our understanding of transcription regulation. Trends Genet.4 (1988) 309–314.Google Scholar
  105. 105.
    Gunn, S. A., and Gould, T. C., The presence of an inherent reproductive cycle in the laboratory rat. J. Endocr.17 (1958) 344–348.Google Scholar
  106. 106.
    Gunn, S. A., and Gould, T. C., Cadminum and other mineral elements in: The testis, vol. 3, pp. 377–481. eds A. D. Johnson, W. R. Gomez and N. L. Van Demark. Academic Press, New York 1970.Google Scholar
  107. 107.
    Habib, F. K., Zinc and the steroid endocrinology of the human prostate. J. Steroid Biochem.9 (1978) 403–407.Google Scholar
  108. 108.
    Habib, F. K., Leake, A., Beynon, L., and Chisholm, D. C., Studies of the relationship between zinc and androgens in the human prostate. Advances in urol. Oncol. Endocr. (1984) 143–150.Google Scholar
  109. 109.
    Habib, F. K., Maddy, S. Q., and Stith, S. R., Zinc induced changes in the progesterone binding properties of the human endometrium. Acta endocr.94 (1980) 99–106.Google Scholar
  110. 110.
    Haider, M. Z., Qazi, M. H., Khanum, A., and Arslan, M., Effect of testosterone on epidiymal proteins in castrated rhesus monkeys. Am. J. Primatol.4 (1983) 73–80.Google Scholar
  111. 111.
    Hall, G. A., and Howell, J., The effect of copper deficiency on reproduction in the female rat. Br. J. Nutr.23 (1969) 41–47.Google Scholar
  112. 112.
    Halsted, J. A., Hackley, B. M., and Smith, J. C. Jr., Plasma zinc and copper in pregnancy and after oral contraceptives. Lancet2 (1968) 278–279.Google Scholar
  113. 113.
    Hambidge, K. M., Neldner, K. H., and Walravens, P. A., Zinc acrodermatitis enteropathica and congenital malformations. Lancet2 (1975) 577–578.Google Scholar
  114. 114.
    Hartfield, W., and Bahners, N., Soil acidity inhibits selenium uptake by plants. Biol. trace Elem. Res.15 (1989) 1–12.Google Scholar
  115. 115.
    Hartoma, T. R., Nahoul, K., and Netter, A., Zinc, Plasma androgens and male sterility. Lancet2 (1977) 1125–1126.Google Scholar
  116. 116.
    Haskins, K. M., Zombola, R. R., Boling, J. M., Lee, Y. C., and Himes, R. H., Tubulin assembly induced by cobalt and zinc. Biochem. biophys. Res. Commun.95 (1980) 1703–1709.Google Scholar
  117. 117.
    Held, N. A., Burgel, N., Wilson, C. A., and Monsen, E. R., Constancy of zinc and copper status in adult women consuming diets varying in ascorbic acid and phytate content. Nutr. Rep. Int.37 (1988) 1308–1312.Google Scholar
  118. 118.
    Hesketh, J. E., Impaired microtubule assembly in brain from zinc deficient pigs and rats. Int. J. Biochem.13 (1981) 921–926.Google Scholar
  119. 119.
    Hess, F. M., King, J. C., and Margen, S., Effect of low zinc intake and oral contraceptive agents on nitrogen utilization and clinical finding in young women. J. Nutr.107 (1977) 2219–2227.Google Scholar
  120. 120.
    Hidiroglou, M., Charrette, L. A., and Paterson, J. S., Weight losses by cattle changed from hay or silage to grass. Can. J. Anim. Sci.45 (1965) 51–53.Google Scholar
  121. 121.
    Higashi, A., Tamari, H., Kuroki, Y., and Matsuda, J., Longitudinal changes in selenium content of breast milk. Acta. paediat. (Stockh. Scand)72 (1983) 433–436.Google Scholar
  122. 122.
    Horn, N., Stene, J., Moltekaer, A. M., and Friedrich, U., Linkage studies in Menkes' disease: The Xg blood group system and C banding of the X chromosome. Ann. hum. Genet.48 (1984) 161–172.Google Scholar
  123. 123.
    Hunt, D. M., Primary defect in copper transport underlies mottled mutants in the mouse. Nature249 (1974) 852–854.Google Scholar
  124. 124.
    Hyrley, L. S., Duncan, J. R., Sloan, M. V., and Eckhert, C. D., Zinc binding ligands in milk and intestine: A role in neonatal nutrition. Proc. natl Acad. Sci. USA74 (1977) 3457–3459.Google Scholar
  125. 125.
    Hurley, L. S., and Keen, C. L., Teratogenic effects of copper, in: Copper in the Environment. Part II, Health Effects, pp. 33–36. Ed. J. Nriagu, Wiley, New York 1979.Google Scholar
  126. 126.
    Hurley, L. S., Keen, C. L., and Lonnerdal, B., Aspects of trace element interactions during development. Fedn. Proc.42 (1983) 1735–1739.Google Scholar
  127. 127.
    Hurley, L. S., and Keen, C. L., Fetal and neonatal development in relation to maternal trace element nutrition: Manganese. Zinc and copper, in: Vitamins and Minerals in Pregnancy and Lactation, Nestle Nutr. Workshop Ser. 16, pp. 215–230. Ed H. Berger, Nestle Ltd. (Vevey) Raven Press Ltd., New York 1988.Google Scholar
  128. 128.
    Hurley, L. S., and Shrader, R. E., Abnormal development of preimplantation rat eggs after three days of maternal dietary zinc deficiency. Nature254 (1975) 427–429.Google Scholar
  129. 129.
    Hurley, L. S., and Swerton, H. P., Congenital malformations resulting from zinc deficiency in rats. Proc. Soc. expl Biol. Med.123 (1966) 692–696.Google Scholar
  130. 130.
    Jaiswal, A., Joshi, P., Kumar, M. V., Panda, J. N., and Singh, L. N., Angiotensin converting enzyme in the testes and epididymus of mammals. Andrologia16 (1984) 410–416.Google Scholar
  131. 131.
    Jameson, S., Effects of zinc deficiency in human reproduction. Acta med. scand.197 (Suppl.) 593. (1976) 1–89.Google Scholar
  132. 132.
    Jamesons, S., Zinc nutrition and human pregnancy, in: Zinc Deficiency in Human Subjects, pp. 53–69. Ed S. Jameson. Alan R. Lis, Inc. New York 1983.Google Scholar
  133. 133.
    Jathan, V. S., Hirwe, R., Desai, S., and Satoskar, R. S., Seminal fructose, citric acid and phosphatase levels and their relation to the sperm count in man. Indian J. Physiol. Pharmac.21 (1977) 186–191.Google Scholar
  134. 134.
    Jensen, E. V., Interaction of steroid hormones with the nucleus. Pharmac. Rev.30 (1979) 477–491.Google Scholar
  135. 135.
    Jepsen, L. V., and Clemmensen, K., Zinc in Danish women during late normal pregnancy and pregnancies with intrauterine growth retardation. Acta obstet. gynec. scand.66 (1987) 401–405.Google Scholar
  136. 136.
    Johnson, T. W., and Kramer, T. R., Effect of copper deficiency on erythrocyte membrane proteins of rat. J. Nutr.117 (1987) 1985–1090.Google Scholar
  137. 137.
    Johnson, W. T., and Saari, J. T., Temporal changes in heart size, hematocrit and erythrocyte membrane protein in copper deficient rats. Nutr. Res.11 (1991) 1403–1414.Google Scholar
  138. 138.
    Julien, W. E., and Murray, F. A., Effect of selenium with vitamin E on in vitro mobility of bovine spermatozoa. J. Anim. Sci.45 (Suppl. 1) (1977) 174–178.Google Scholar
  139. 139.
    Kadonaga, J., Carner, K., Masiaz, F., and Tjian, R., Isolation of cDNA endocing transcription factor Spl and functional analysis of the DNA binding domain. Cell51 (1987) 1079–1090.Google Scholar
  140. 140.
    Karpel, J. T., and Peden, V. H., Copper deficiency in long term parenteral nutrition. J. Pediat.80 (1972) 32–36.Google Scholar
  141. 141.
    Keen, C. L., Reinstein, N. H., Lefevre, J. G., Lefevre, M., Lonnerdal, B. O., Schneeman, B. O., and Hurley, L. S., Effect of dietary copper and zinc levels on tissue copper, zinc and iron in male rats. Biol. Trace Elem. Res.8 (1985) 123–136.Google Scholar
  142. 142.
    Kennedy, B. W., Working, P. K., Bhathena, S. J., Lewis, C. G., and Fields, M., The effect of dietary carbohydrate and copper status on testicular development (abstract). Fedn Proc.46 (1986).Google Scholar
  143. 143.
    King, J. C., Do women using oral contracepive agents require extra zinc? J. Nutr.117 (1987) 217–219.Google Scholar
  144. 144.
    Klung, A., and Rhodes, D., Zinc fingers' a novel protein motif for nucleic acid recognition. Trends biochem. Sci.12 (1987) 464–469.Google Scholar
  145. 145.
    Koopman, P., Gubbay, J., Collignon, J., and Lovell-Badge, R., Zfy gene expression patterns are not compatible with a primary role in sex determination. Nature342 (1989) 940–942.Google Scholar
  146. 146.
    Koppelman, M. C. S., A potential role for prolactin in zinc homeostasis. Med Hypoth.25 (1988) 65–68.Google Scholar
  147. 147.
    Korte, J. J., and Prohaska, J. R., Dietary copper deficiency alters protein and lipid composition of murine lymphocyte plasma membranes. J. Nutr.117 (1987) 1076–1084.Google Scholar
  148. 148.
    Kraker, A. J., and Petering, D. H., Biol. Tr. Elem. Res.5 (1983) 363–365. Cited from Vormann, J., and Gunther, T., Development of fetal mineral and trace element metabolism in rats with normal as well as magnesium and zinc deficient diets. Biol. Trace Elem. Res.9 (1985) 37–53.Google Scholar
  149. 149.
    Krebs, N. F., and Hambidge, K. M., Zinc requirements and zinc intake of breast fed infants. Am. J. clin. Nutr.43 (1986) 288–292.Google Scholar
  150. 150.
    Kumpulainen, J., Selenium requirement and supplementations. Acta paediat. (Stockh. scand. Suppl.)351 (1989) 114–117.Google Scholar
  151. 151.
    Kumpulainen, J., Salmenpera, L., and Siimes, M. A., Effect of maternal selenium supplementation on the selenium status of exclusively breast fed infants. Am. J. clin. Nutr.42 (1985) 829–835.Google Scholar
  152. 152.
    Kumpulainen, J., Vuori, E., and Sumes, M. A., Effect of maternal dietary selenium intake on selenium levels in breast milk. Int. J. Vitam. Nutr. Res.54 (1984) 251–255.Google Scholar
  153. 153.
    Kvist, U., Spermatozoal thiol disulphite interaction: A possible event underlying physiological sperm nuclear chromatin decondensation. Acta physiol. scand.115 (1982) 503–505.Google Scholar
  154. 154.
    Kvist, U., and Bjorndhal, L., Zinc preserves an inherent capacity for human sperm chromatin decondensation. Acta physiol. scand.124 (1985a) 195–200.Google Scholar
  155. 155.
    Kvist, U., Bjorndhal, L., Roomans, M., and Lidhomer, C., Nuclear zinc in human epididymal and ejaculated spermatozoa. Acta physiol. scand.125 (1985b) 1–13.Google Scholar
  156. 156.
    Kvist, U., Bjorndhal, L., and Kjellberg, L., Sperm nuclear zinc, chromatin stability and male fertility. Scanning Microscopy1 (1987) 1241–1247.Google Scholar
  157. 157.
    Kynast, G., and Saling, E., Effect of oral zinc application during pregnancy. Gynec. Obstet. Invest.21 (1986) 117–123.Google Scholar
  158. 158.
    Langley, J., Goldsmid, J., and Davies, N., Venereal trichomoniasis: Role in men. Genitourin. Med.64 (1987) 264–267.Google Scholar
  159. 159.
    Lao, T. T. H., Chin, R. K. H., Mak, Y. T., and Swaminathan, R., Changes in erythrocyte and plasma zinc concentrations in pregnancy. Gynec. Obstet. Invest.25 (1988) 213–216.Google Scholar
  160. 160.
    Larsson, H., Wallin, M., and Edstrom, A., Induction of a sheet polymer of tubulin by zinc. Expl Cell Res.100 (1976) 104–110.Google Scholar
  161. 161.
    Lazebnik, N., Kuhnert, B. R., Kuhnert, P. M., and Thompson K. L., Zinc status, pregnancy complications and labor abnormalities. Am. J. Obstet. Gynecol.158 (1988) 161–166.Google Scholar
  162. 162.
    Lei, K. Y., Abbasi, A., and Prasad, A. S., Function of the pituitary-gonadal axis in zinc deficient rats. Am. J. Physiol.230 (1976) 1730–1732.Google Scholar
  163. 163.
    Lieberman, J., and Sastre, A., Angiotensin-converting enzyme activity in postmortem human tissues. Lab. Invest.48 (1983) 711–717.Google Scholar
  164. 164.
    Lincoln, D. W. and Porter, D. G., Anim. Reprod. Sci.2 (1979) 97–101. Cited from Lytton, D. C., and Bunce, G. E., Dietary zinc and parturition in the rat. I Uterine Pressure Cycle. Biol. Trace Elem. Res.9 (1986) 151–163.Google Scholar
  165. 165.
    Login, I. S., Thorner, M. O., and MacLeod, P. M., Zinc may have a physiological role regulating pituitary prolactin secretion. Neuroendocrinology37 (1983) 317–320.Google Scholar
  166. 166.
    Lonnerdal, B., Keen, C. L., and Hurley, L. S., Zinc binding ligands and complexes in zinc metabolism. in: Advances in Nutrition Research, pp. 139–168. Ed. H. H. Draper, Plenum Press, New York 1984.Google Scholar
  167. 167.
    Lytton, F. D. C., and Bunce, G. E., Dietary zinc and parturition in the rat. I. Uterine pressure cycles. Biol. Trace Elem. Res.9 (1986) 151–163.Google Scholar
  168. 168.
    MacDonald, I., Influence of fructose and glucose on serum lipid levels in men and pre- and post-menopausal women. Am. J. clin. Nutr.18 (1966) 369–372.Google Scholar
  169. 169.
    Machado de-Domenech, E. M., Domenech, C. E., Aoki, A., and Blanco, A., Association of the testicular lactate dehydrogenase isoenzyme with a special type of mitochondria. Biol. Reprod.6 (1972) 136–147.Google Scholar
  170. 170.
    Mann, T., and Lutwak-Mann, C. A., Male Reproductive Function and Semen. Themes and Trends in Physiology Biochemistry and Investigative Andrology. Springer, Berlin 1981.Google Scholar
  171. 171.
    Mardon, G., and Page, D. C., The sex-determining region of the mouse Y chromosome encodes a protein with a highly acidic domain and 13 zinc fingers. Cell56 (1989) 765–770.Google Scholar
  172. 172.
    Markert, C. L., Isoenzymes and cellular differentiation, in: Advances in Biosciences 6 (Schering symposium on intrinsic and extrinsic factors in early mammalian development), pp. 511–526. Vieweg. Pergamon 1971.Google Scholar
  173. 173.
    Masters, D. G., Keen, C. L., Lonnerdal, B., Hurley, L. S., Zinc deficiency teratogencity: the protective role of maternal tissue catabolism. J. Nutr.113 (1983) 905–912.Google Scholar
  174. 174.
    Masters, D. G., and Moir, R. S., Effects of zinc deficiency on the pregnant ewe and developing foetus. Br. J. Nutr.49 (1983) 365–372.Google Scholar
  175. 175.
    Matossian, M. K., Fertility decline in Europe, 1875–1913. Was zinc deficiency the cause? Perspect. Biol. Med.34 (1991) 604–616.Google Scholar
  176. 176.
    Matusik, R. J., Kreis, C., McNicol, P., Sweetland, R., Mullin, C., Fleming, W. H., and Dodd, J. G., Regulation of prostatic genes: Role of androgens and zinc in gene expression. Biochem. Cell Biol.64 (1985) 601–607.Google Scholar
  177. 177.
    Mawson, C. A., and Fisher, M. I., Zinc content of genital organs of rat. Nature, Lond.167 (1951) 859–863.Google Scholar
  178. 178.
    McConnell, K. P., and Burton, R. M., Selenium and spermatogenesis, in: Selenium in Biology and Medicine, pp. 132–145. Eds. J. E. Spallholz, J. L. Martin and H. E. Ganther. Avi. Publ. Co. Inc. Westport, Ireland 1981.Google Scholar
  179. 179.
    McCoy-Kim, E. N., and Weswig, G. H., Some selenium responses in the rat not related to vitamin E. J. Nutr.98 (1969) 383–389.Google Scholar
  180. 180.
    McKenzie, R. L., Rea, H. M., Thomson, C. D., and Robinson, M. F., Selenium concentration and glutathione peroxidase activity in blood of New Zealand infants and children. Am. J. clin Nutr.31 (1978) 1413–1418.Google Scholar
  181. 181.
    Meadows, N. J., Ruse, W., Smith, M. F., Day, J., Reeling, P. W. N., Scopes, J. W., and Thompson, R. P. H., Zinc and small babies. LancetII (1981) 1135–1137.Google Scholar
  182. 182.
    Mehta, S. W., and Eikum, R., Effect of estrogen on serum and tissue copper and zinc levels in the female rats. Nutr. Rep. Int.40 (1989) 1101–1106.Google Scholar
  183. 183.
    Meyer, B. J., Meyer, A. C., and Horwitt, M. K., Factors influencing serum copper and cerulopasmin oxidative activity in the rat. Am. J. Physiol.194 (1958) 158–161.Google Scholar
  184. 184.
    Mildvan, A. S., and Loeb, L. A., The role of metal ions in the mechanism of DNA and RNA polymerases, in: Advances in Inorganic Biochemistry, Metal Ions in Genetic Information Transfer, vol. 3, pp. 103–123. Ed G. L. Eichhorn, and L. G. Marzilli. Elsevier. New York 1981.Google Scholar
  185. 185.
    Miller, M. J., Elcoate, P. V., Fisher, M. I., and Mawson, C. A., Sex hormone control of the zinc content of the prostate. Can. J. Biochem. Physiol.38 (1960) 865–868.Google Scholar
  186. 186.
    Miller, M. J., Fisher, M. I., Elcoate, P. V., and Mawson, C. A., The effects of dietary zinc deficiency on the reproductive system of male rats. Can. J. Biochem. Physiol.36 (1958) 557–569.Google Scholar
  187. 187.
    Miller, J. A., Serio, G. F., Howard, R. A., Bear, J. L., Evans, J. E., and Kimball, A. P., Subunit localization of zinc (II) in DNA dependent RNA polymerase fromE. coli. Biochim. biophys. Acta579 (1979) 291–297.Google Scholar
  188. 188.
    Milner, J. A., Sherman, M. S., and Picciane, M. F., Distribution of selenium in human milk. Am. J. clin. Nutr.45 (1987) 617–624.Google Scholar
  189. 189.
    Morisawa, M., and Mohri, H., Heavy metals and spermatozoa motility. I. Distribution of iron, zinc and copper in sea urchin spermatozoa. Expl Cell Res.70 (1972) 311–316.Google Scholar
  190. 190.
    Mukherjee, M. D., Sandstead, H. H., Ratnaparki, M. V., Johnson, L. K., Milne, D. B., and Stelling, H. P., Maternal zinc, iron, folic acid and protein nutrition and outcome of pregnancy. Am. J. clin. Nutr.40 (1984) 496–507.Google Scholar
  191. 191.
    Nagamine, C. M., Chan, K., Hake, L. E., and Lau, Y. F. C., The two candidate testis determining Y genes (Zfy-1 and Zfy-2) are differentially expressed in fetal and adult mouse tissues. Genes Dey.4 (1990) 63–74.Google Scholar
  192. 192.
    Nicander, L. Z., An electron microscopical study of absorbing cells in the posterior caput epididymis of rabbits. Zellforsh. Mikroskop. Anat.66 (1965) 829–847.Google Scholar
  193. 193.
    Oishi, S., and Hirage, K., Testicular atrophy induced by di(2 ethylhexyl) phthalate: Effect of zinc supplement. Toxic. appl. Pharmac.70 (1983) 43–48.Google Scholar
  194. 194.
    Oliw, E., Granstrong, E., and Anggard, E., The prostaglandins and related substances. pp. 1–44. Eds C. Pace, Asciak, and E. Grnstrom. Elsevier scientific publishing Co., Amsterdam 1983.Google Scholar
  195. 195.
    Olmsted, J. B., and Borisy, G. G., Ionic and nucleotide requirements for microtubule polymerization in vitro. Biochemsitry14 (1975) 2996–3005.Google Scholar
  196. 196.
    Olsson, U. L. F., Selenium deficiency and detoxication functions in the rat: Short term effect of cadmium. Drug Nutrient Interactions4 (1986) 309–319.Google Scholar
  197. 197.
    Orgebin-Crist, M. C., and Hochereau-de-Reviers, M. T., Sperm formation and maturation: Role of testicular and epididymal somatic cells. 9th Int. Cong. Artificial Insemination, pp. 59–82. Madrid 1980.Google Scholar
  198. 198.
    Page, D. C. Mosher, R., Simpson, E., Fisher, E. M. C., Mardon, G., Pollack, J., McGillivray B., de La Chapelle, A., and Brown, L. G., The sex determining region of the human Y chromosome encodes a finger protein. Cell51 (1987) 1091–1104.Google Scholar
  199. 199.
    Pallini, V., Baccetti, B., and Burrini, A. G., A peculiar cysteine rich polypeptide as related to some unusual properties of mammalian sperm mitochondria, in: The Spermatozoa, Maturation, Motility, Surface Properties and Comparative Aspects, pp. 141–151. Eds D. W. Fawcett and J. M. Bedford. Urban and Schwarzenberg, Baltimore 1979.Google Scholar
  200. 200.
    Pallini, V., and Bacci, E., Bull sperm selenium is bound to a structural protein of mitochondria. J. submicr. Cytol.11 (1979) 165–170.Google Scholar
  201. 201.
    Palmer, M. S., Sinclair, A. H., Berta, P., Ellis, N. A., Godfellow, P. N., Abbas, N. E., and Fellous, M., Genetic evidence that Zfy is not the testis determining factor. Nature342 (1989) 937–939.Google Scholar
  202. 202.
    Parizek, J., Boursnell, J. C., Hay, M. P., Ballicky, A., and Taylor, D. M., Zinc in maturing rat testis. J. Reprod. Fert.12 (1966) 501–508.Google Scholar
  203. 203.
    Prasad, A. S., Metabolism of zinc and its deficiency in human subjects, in: Zinc Metabolism, pp. 250–293. Ed. A. S. Prasad, Thomas, Springfield 1966.Google Scholar
  204. 204.
    Prasad, A. S., Clinical, biochemical and pharmacological role of zinc. A. Rev. Toxic.20 (1979) 393–426.Google Scholar
  205. 205.
    Prasad. A. S., Trace metals in growth and sexual maturation, in: Metabolism of Trace Metals in Man, pp. 79–97. Eds O. M. Rennert, and W. Y. Chan, CRC Press, Boca Raton, FL 1984.Google Scholar
  206. 206.
    Prasad, A. S., and Oberleas, D., Ribonuclease and deoxyribonuclease activities in zinc deficient tissues. J. Lab. clin. Med.82 (1973) 461–466.Google Scholar
  207. 207.
    Prasad, A. S., Oberleas, D., Lei, K. Y., Moghissi, K. S., and Stryker, J. C., Effect of oral contraceptive agents on nutrients. I. Minerals. Am. J. clin. Nutr.28 (1975) 377–384.Google Scholar
  208. 208.
    Prema, K., Ramalakshimi, B. A., and Babu, S., Serum copper and zinc in harmonal contraceptive users. Fert. Ster.33 (1980) 267–271.Google Scholar
  209. 209.
    Prohaska, J. R., Comparison of copper metabolism between brindled mice and dietary copper deficient mice using67Cu. J. Nutr.113 (1983) 1212–1220.Google Scholar
  210. 210.
    Prohaska, J. R., Genetic diseases of copper metabolism. Clin. Physiol. Biochem.4 (1986) 87–93.Google Scholar
  211. 211.
    Prohaska, J. R., Development of copper deficiency in neonatal mice. J. Nutr. Biochem.1 (1990) 415–419.Google Scholar
  212. 212.
    Prohaska, J. R., Bailey, W. R., Gross, A. M., and Korte, J. J., Effect of dietary copper deficiency on the distribution of dopamine and norepinephrine in mice and rats. J. Nutr. Biochem.1 (1990) 149–154.Google Scholar
  213. 213.
    Quinn, P. J., Deoxyribonuclease activity in semen. J. Reprod. Fert.17 (1968) 35–41.Google Scholar
  214. 214.
    Rauch, H., Toxic mlk, a new mutation affecting copper metabolism in the mouse. J. Hered.74 (1983) 141–144.Google Scholar
  215. 215.
    Record, I. R., Zinc deficiency and the developing embryo. Neurotoxicology8 (1987) 369–378.Google Scholar
  216. 216.
    Record, I. R., Dreosti, I. E., Tulsi, R. S., Maneul, S. J., and Fraser, F. J., The zinc deficient rat embryo morphological and biochemical observations. Proc. Aust. Terat. Soc.1 (Abstract) (1983) 15.Google Scholar
  217. 217.
    Record, I. E., Dreosti, I. E., and Tulsi, R. S., In vitro development of zinc deficient and replete rat embryos. Aust. J. expl. Biol. med. Sci.63 (1985) 65–71.Google Scholar
  218. 218.
    Record, I. R., Dreosti, I. E., Tulsi, R. S., and Maneul, S. J., Maternal metabolism and Teratogenesis in zinc deficient rats. Teratology33 (1986) 311–317.Google Scholar
  219. 219.
    Record, I. R., Tulsi, R. S., Dreosti, I. E., and Fraser, F. J., Cellular necrosis in zinc deficient rat embryos. Teratology32 (1985) 397–405.Google Scholar
  220. 220.
    Reed, M. J., and Stitch, S. R., The uptake of zinc and testosterone in vitro by the human benign hypertrophic prostate. J. Endocr.58 (1973) 405–419.Google Scholar
  221. 221.
    Reeves, P. G., and O'Dell, B. L., An experimental study of the effect of zinc on the activity of angiotensin converting enzyme in serum. Clin. Chem.31 (1985) 581–584.Google Scholar
  222. 222.
    Reeves, P. G., and O'Dell, B. L., Zinc deficiency in rats and angiotensin-converting enzyme activity: Comparative effects on lung and testis. J. Nutr.118 (1981) 622–626.Google Scholar
  223. 223.
    Reiser, S., Bickard, M. C., Hallfrisch J., Michealis O. E. V., and Prather, E. S., Blood lipids and their distribution in lipoproteins in hyperinsulinemic subjects fed three different levels of sucrose. J. Nutr.111 (1981) 1045–1057.Google Scholar
  224. 224.
    Romeu, A., Aroola, L., and Alemany, M., Essential metal balance and retention during second half of pregnancy in rat. Gynec. obstet. Invest.23 (1987) 40–47.Google Scholar
  225. 225.
    Rosenberg, U. B., Schroder, C., Preiss, A., Kielin, A., Cote, S., Riede, E., and Jackle, H., Structural homology of the product of the Drosophila kruppel gene with Xenopus transcription factor. III A. Nature, Lond.319 (1986) 336–339.Google Scholar
  226. 226.
    Russanov, E., Banskalieva, V., and Lyutakova, S., Influence of sex hormones on the subcellular distribution of copper in sheep liver. Res. vet. Sci.30 (1981) 233–235.Google Scholar
  227. 227.
    Saha, A., Basu, J., and Bhattacharya, A. K., Seminal acid phosphatase from normal, oligospermic, vasectomised and azoospermic men. Int. J. Fert.26 (1981) 124–126.Google Scholar
  228. 228.
    Saito, S., Bush, I. M., and Whitmore, W. F., Effects of certain metals and chelating agents on rat and dog epididymal spermatozoan motility. Fert. Steril.19 (1967) 517–529.Google Scholar
  229. 229.
    Salvin, S. B., and Rabin, B. S., Resistance and susceptibility to infection in inbred murine strains IV. Effects of dietary zinc. Cell Immuno.87 (1984) 546–549.Google Scholar
  230. 230.
    Sato, F., Watanabe, T., Hoshi, E., and Endo, A., Tertogenic effect of maternal zinc deficiency and its co-teratogenic effect with cadmium. Teratology31 (1988) 13–18.Google Scholar
  231. 231.
    Saxena, R., Bedwal, R. S., and Mathur, R. S., Biochemistry of the testes of rats fed on zinc deficient diets. Trace Elem. Med.8 (1991) 138–142.Google Scholar
  232. 232.
    Saxena, R., Bedwal, R. S., and Mathur, R. S., Histopathology of epididymis and prostate of zinc deficient Sprague Dawley rats. Trace Elem. Med. (1993).Google Scholar
  233. 233.
    Saylor, W. W., and Downer, J. V., Copper and zinc distribution in the liver and oviduct of estrogen and testosterone treated hens. Nutr. Res.6 (1986) 181–190.Google Scholar
  234. 234.
    Schamberger, T. J., Metabolism of selenium, in: Biochemistry of Selenium, vol. 2, pp. 59–175. Ed. E. Frieden. Plenum, New York 1983.Google Scholar
  235. 235.
    Scheinberg, H., Wilson's disease. J. Rheum.8 Suppl. (1981) 90–93.Google Scholar
  236. 236.
    Schneider-Gadicke, A., Beer-Romero, P., Brown, L. G., Madon, G., Luoh, S. W., and Page, D. C., Putative transcription activator with alternative isoforms encoded by human ZFX gene. Nature342 (1989) 706–708.Google Scholar
  237. 237.
    Schwarz, K., and Foltz, C. M., Selenium as an integral part of factor 3 against dietary liver degeneration. J. Am. chem. Soc.79 (1957) 3292–3293.Google Scholar
  238. 238.
    Severne, Y., Wieland, S., Schaffner, W., and Rusconis, S., Metal binding ‘finger’ structures in the glucocorticoid receptor defined by site-directed mutagenesis. EMBO J.7 (1988) 2503–2508.Google Scholar
  239. 239.
    Schamberger, R. J., Interactions of trace elements and enzymes in humans, in: Trace Elements — Analytical Chemistry in Medicine and Biology, vol. 4, pp. 181–199. Eds P. Bratter and P. Schramel. Walter De Gruyter and Co., Berlin 1987.Google Scholar
  240. 240.
    Sheldon, W. L., Asspillaga, M. O., and Smith, P. A. The effects of oral iron supplementation on zinc and magnesium levels during pregnancy. Br. J. Obstet. Gynaec.92 (1985) 892–898.Google Scholar
  241. 241.
    Shih, D. M., and Kleene, K. C., A study by in situ hybidization of the stage of appearance and disappearance of transition protein 2 and the mitochondrial capsule seleno-protein mRNAs during spermatogenesis in mouse. Molec. Reprod. Dev.33 (1992) 222–227.Google Scholar
  242. 242.
    Shike, M., Copper ion parenteral nutrition: Deficiency metabolism and requirements, in: Essential and Toxic Elements in Human Health and Disease — Current Topics in Nutrition and Disease, vol. 18, pp. 469–477. Ed. A. S. Prasad, R. Alan. Liss Inc., New York 1988.Google Scholar
  243. 243.
    Shin, Y. A., and Eichhorn, G. L., Interaction of metal ions with polynucleotides and related compounds XI. The reversible unwinding and rewinding of deoxyribonucleic acid and by zinc (II) ions through temperature manipulations. Biochemistry7 (1968) 1026–1032.Google Scholar
  244. 244.
    Simmer, K., and Thompson, R. P. H., Zinc in the fetus and newborn. Acta. paediat., Stockh.319 Suppl. (1985) 158–163.Google Scholar
  245. 245.
    Sinclair, A. H., Foster, J. W., Spancer, J. A., Page, D. C., Palmer, M., Goodfellow, P. N., and Graves, J. A., Sequence homologous to Zfy, a candidate human sex determining gene are autosomal in marsupials. Nature336 (1988) 780–783.Google Scholar
  246. 246.
    Skandhan, K. P., Skandhan, S., and Melita, Y. B., Semen electrolytes in normal and infertile subjects II. Zinc. Experientia34 (1978) 1476–1477.Google Scholar
  247. 247.
    Slater, J. P., Mildvan, A. S., Loeb, L. A., Zinc in DNA polymerases. Biochem. biophys. Res. Commun.44 (1971) 37–43.Google Scholar
  248. 248.
    Smith, A. M., Picciano, M. F., and Milner, J. A., Selenium intakes and status of human milk and formula fed infants. Am. J. clin. Nutr.35 (1982) 521–526.Google Scholar
  249. 249.
    Solomon, N. W., On the assessment of zinc and copper nutriture in man. Am. J. clin. Nutr.32 (1979) 856–858.Google Scholar
  250. 250.
    Solten, M. H., and Jenkins, D. M., Maternal and foetal plasma zinc concentration and foetal abnormality. Br. J. Obstet. Gynaec.89 (1982) 56–58.Google Scholar
  251. 251.
    Srivastava, A., and Setty, B. S., The distribution of zinc in the subcelular fractions of the Rhesus Monkey testis. Biol. Trace Elem. Res.7 (1984) 83–87.Google Scholar
  252. 252.
    Stegmayr. B., and Ronquist, G., Stimulation of sperm progressive motility by organelles in human seminal plasma. Scand. J. Urol. Nephrol.16 (1982) 85–91.Google Scholar
  253. 253.
    Stengaad-Pedersen, K., Inhibitions of enkephalin binding to opiate receptors by zinc inos: Possible physiological importance in the brain. Acta pharmac. Tox.50 (1982) 213–220.Google Scholar
  254. 254.
    Strauss, J. F., Sokoloski, J., Capoloe, P., Duffy, P., Mintz, G., and Stambaugh, R. L., On the role of prostaglandins in parturition in the rat. Endocrinology96 (1975) 1040–1043.Google Scholar
  255. 255.
    Sullivan, J. F., Jetton, M. M., Hahn, H. K. J., and Burch, R. E., Enhanced lipid peroxidation in liver microsomes of zinc deficient rats. Am. J. clin. Nutr.33 (1980) 51–56.Google Scholar
  256. 256.
    Swanson, C. A., and King, J. C., Zinc and pregnancy outcome. Am. J. clin. Nutr.46 (1987) 763–771.Google Scholar
  257. 257.
    Szerdahelyi, P., and Kasa, P., Histochemical demonstration of copper in normal rat brain and spinal cord: Evidence of a localization in glial cells. Histochemistry85 (1986) 341–347.Google Scholar
  258. 258.
    Szilagyi, M., Anke, M., Szentmihalyi, S., Groppel, B., Angelow, L., Balogh, I., and Suri, A., Serum enzyme status of goats with selenium deficiency, in: Mengen und Spurenelemente Arbeitstagung, vols 1, 2, pp. 194–199. Eds M. Anke, C. Bruckner, H. Gurtler and M. Grun. Karl-Marx Universität Leipzig 1986.Google Scholar
  259. 259.
    Taneja, S. K., Kang, H., and Chopra, P., Effect of testosterone propionate on cytochemical profile of epididymis of zinc deficient rats. J. expl Biol.24 (1986) 676–678.Google Scholar
  260. 260.
    Taneja, S. K., and Kaur, R., Effects of dietary zinc deficiency on the distribution of lipids in the ovary of mature mouse. Indian J. expl. Biol.26 (1988) 271–273.Google Scholar
  261. 261.
    Taneja, S. K., and Kaur, R., Pathology of ovary, uterus, vagina and gonadotrophs of female mice fed on zinc-deficient diet. Indian J. expl. Biol.28 (1990) 1058–1065.Google Scholar
  262. 262.
    Taneja, S. K., and Nirmal, Histopathology of testes of mice fed of zinc deficient diet. Indian J. expl. Biol.18 (1980) 1411–1414.Google Scholar
  263. 263.
    Thorburn, G. D., and Challis, J. R. G., Endocrine control of parturition. Physiol. Rev.59 (1979) 863–918.Google Scholar
  264. 264.
    Thorlacius-Ussing, O., Zinc in the anterior pituitary of rat: A histochemical and analytical work. Neuroendocrinology45 (1987) 233–242.Google Scholar
  265. 265.
    Thorlacius-Ussing, O., and Danscher, G., Selenium in the anterior pituitary of rats exposed to sodium selenite: Light and electron microscopic localization. Toxic. appl. Pharmac.81 (1985) 67–74.Google Scholar
  266. 266.
    Timm, F., and Schulz, G., The testis and heavy metals. Histochemistry70 (1966) 15–21.Google Scholar
  267. 267.
    Umeyama, T. H., Ishikawa, H., Takeshima, S., Hoshii, S., and Koiso, K., A comparative study of seminal trace elements in fertile and infertile men. Fert. Steril.46 (1986) 494–499.Google Scholar
  268. 268.
    Underwood, E. J., Zinc in animal tissues and fluids, in: Trace Elements in Animal and Human Nutrition. pp. 196–242. Ed. E. J. Underwood. Academic Press, New York 1977.Google Scholar
  269. 269.
    Upadhayaya, M., Hibbard, B. N., and Walker, S. M., Seminal acid phosphatase in relation to fetility. Acta obstet. gynec. scand.65 (1986) 49–52.Google Scholar
  270. 270.
    Vallee, B. L., and Falchuk, K. H., Zinc and gene expression. Phil. Trans. R. Soc. Ser. B.294 (1981) 185–197.Google Scholar
  271. 271.
    Vallee, B. L., and Falchuk, K. H., Gene expression and zinc, in: Biological Aspects of Metals and Metal-related disease, pp. 1–14. Ed. B. Sarkar. Raven Press Ltd., New York 1983.Google Scholar
  272. 272.
    Valletri, P. A., Aquilano, D. R., Druckwich, E., Isai-Morris, C. H., Dufau, M. L., and Lovenberg, W., Endocrinological converting enzyme (Ec 3.4.25.1) Endocrinology116 (1985) 2516–2522.Google Scholar
  273. 273.
    Verburg, D. J., Burd, L. J., Hoxtill, E. O., and Merill, L. K., Acrodermatitis enteropathica and pregnancy. Obstet. Gynec.44 (1974) 233–235.Google Scholar
  274. 274.
    Vir, S. C., and Love, A. H. G., Zinc and copper nutriture of women taking oral contraceptive agents. Am. J. clin. Nutr.34 (1981) 1479–1483.Google Scholar
  275. 275.
    Stockhausen, H. B. von, Selenium in total parenteral nutrition. Biol. Trace Elem. Res.15 (1988) 147–155.Google Scholar
  276. 276.
    Wallace, E., Calvin, H. I., and Cooper, G. W., Progressive defects observed in mouse sperm during the course of three generation of selenium deficiency. Gamete Res.4 (1983) 377–387.Google Scholar
  277. 277.
    Wallace, E., Calvin, H. I., Salgo, M. P., Dennis, D. E., and Ploetz, K., Normal levels of zinc and sulphdryls in morphologically abnormal populations of spermatozoa from moderetely zinc deficient rats. Gamete Res.9 (1984) 375–386.Google Scholar
  278. 278.
    Wallin, M., Larsson, H., and Edstrom, A., Tubulin sulphydryl group and polymerization in vitro. Expl Cell Res.107 (1977) 219–225.Google Scholar
  279. 279.
    Watanabe, T., Sato, F., and Endo, A., Cytogenic effects of zinc deficiency on oogenesis and spermatogenesis in mice. Yamagata Med. J.1 (1983) 13–19.Google Scholar
  280. 280.
    Webber, M. M., Perez-Rippol, E., and James, T. G., Inhibitory effects of selenium on the growth of DU-145 Human prostate carcinoma cells in vitro. Biochem. biophys. Res. commun.130 (1985) 603–609.Google Scholar
  281. 281.
    Westermark, T., Rauna, P., Kirjarinta, M., and Lappalainan, L., Selenium content of whole blood and serum in adults and children in different ages from different parts of Findland. Acta pharmac. tox.40 (1977) 465–475.Google Scholar
  282. 282.
    Wetterdal, B., Experimental studies on radioactive zinc in the male reproductive organs of the rat. Acta radiol.156 Suppl. (1958) 3–83.Google Scholar
  283. 283.
    Wheat, T. E., and Goldberg, E., Sperm-specific lactate dehydrogenase C4, in: Isozymes. Current topics in Biological and Medical Research, pp. 113–130. Eds J. G. Scandalios and G. S. Whitt. Liss, New York 1983.Google Scholar
  284. 284.
    Williams, R. B., Davies, N. T., and McDonald, I., The effects of pregnancy and lactation in copper and zinc retention in rat. Br. J. Nutr.38 (1977) 407–416.Google Scholar
  285. 285.
    Willett, W. C., Morris, J. S., Pressel, S., Taylor, J. D., Polk, B. F., Stempfer, M. J., Rosner, B., Schneider, K., and Hames, C. C., Prediagnostic serum selenium and risk of cancer. LancetII (1983) 130–134.Google Scholar
  286. 286.
    Wu, C. W., Wu, F. Y. H., and Speckhard, D. C., Sub unit location of the intrinsic divalent metal ions in RNA polymerase fromE. Coli. Biochemistry16 (1977) 5449–5454.Google Scholar
  287. 287.
    Wu, F. Y. H., and Wu, C. W., The role of zinc in DNA and polymerases, in: Metal ions in Biological Systems, vol. 5, pp. 157–192. Ed. H. Sigel. Dekker, New York 1983.Google Scholar
  288. 288.
    Wu, S. H., Oldfield, J., Shull, L. R., and Cheeka, P. R., Specific effect on selenium defieiency on rat sperm. Biol. Reprod.20 (1979) 793–798.Google Scholar
  289. 289.
    Wu, S. H., Oldfield, J. E., and Whanger, P. D., Effect of selenium Vitamin E, and antioxidants on testicular function in rats. Biol. Reprod.8 (1973) 625–629.Google Scholar
  290. 290.
    Yunice, A. A., and Lindeman, R. D., Effect of estrogen progesteone administration on tissue cation concentrations in the rat. Endocrinology97 (1975) 1263–1268.Google Scholar
  291. 291.
    Zadikovskii, I. A., Zeligman, S. B., and Soroka, V. R., Tr. Nauch. Knof. Vozrastn. Morfol. Fizol. Biochim. No. 2222 (1972) (Chemical Abstract 1973, 79, Abstract 40298r).Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • R. S. Bedwal
    • 1
  • A. Bahuguna
    • 1
  1. 1.Cell Biology Laboratory, Department of ZoologyUniversity of RajasthanJaipurIndia

Personalised recommendations