Advertisement

Experientia

, Volume 49, Issue 10, pp 865–869 | Cite as

Blockade by zinc ions of K+-induced contraction and calcium in guinea pigTaenia coli

Research Articles

Abstract

Preincubation with 0.3 mM Zn2+ markedly inhibited both the tonic response and Ca2+ binding at low affinity sites induced by K+ (60 mM), with smaller effects on the phasic response and the high affinity Ca2+ sites, inTaenia coli. However, when the muscle was kept in Zn2+-containing medium following the first stimulation with the K+, the phasic response and the high affinity Ca2+ sites were more severely inhibited during the second stimulation with K+. This probably indicates that Zn2+ reduced the tonic tension response to K+ mainly by inhibiting Ca2+ influx at the cell membranes ofTaenia coli. However, when Zn2+ is continuously present, Ca2+ is not supplied at the storage sites and is not available for the phasic response to a second stimulation with K+.

Key words

Zinc ions calcium ileal muscle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Thind, G. S., Stephen, K. F., and Blakemore, W. S., Am. J. Physiol.219 (1970) 577.PubMedGoogle Scholar
  2. 2.
    Toda, N., Am. J. Physiol.225 (1973) 350.PubMedGoogle Scholar
  3. 3.
    Nasu, T., Br. J. Pharmac.79 (1983) 751.Google Scholar
  4. 4.
    Osa, T., Jap. J. Physiol.24 (1974) 101.PubMedGoogle Scholar
  5. 5.
    Nasu, T., Koshiba, H., Mase, K., and Ishida, Y., J. Pharm. Pharmac.35 (1983) 505.Google Scholar
  6. 6.
    Nasu, T., Nakai, E., Gyobu, K., and Ishida, Y., Gen. Pharmac.15 (1984) 247.Google Scholar
  7. 7.
    Schnieden, H., and Small, R. C., Br. J. Pharmac.41 (1971) 488.Google Scholar
  8. 8.
    Sarria, B., Cortijo, J., Martini-Cabrera, M., Morcillo, E., and Esplugues, J., Br. J. Pharmac.97 (1989) 19.Google Scholar
  9. 9.
    Cho, C. H., and Teh, G. W., J. Pharm. Pharmac.43 (1991) 294.Google Scholar
  10. 10.
    Brading, A. F., and Jones, A. W., J. Physiol.200 (1969) 387.PubMedGoogle Scholar
  11. 11.
    Spedding, M., Naunyn-Schmiedebergs Arch. Pharmak.318 (1982) 234.Google Scholar
  12. 12.
    Nasu, T., Ooyama, I., and Shibata, H., Comp. Biochem. Physiol.104C (1993) 97.Google Scholar
  13. 13.
    Nasu, T., J. Pharm. Pharmac.44 (1992) 879.Google Scholar
  14. 14.
    Naus, T., Suzuki, J., and Shiabta, H., Comp. Biochem. Physiol.104C (1993) 91.Google Scholar
  15. 15.
    Jacobs, E. E., Jacob, M., Sanadi, D. R., and Bradley, L. B., J. biol. Chem.223 (1956) 147.PubMedGoogle Scholar
  16. 16.
    Pfaffman, M., Urakawa, N., and Holland, W. C., Am. J. Physiol.208 (1965) 1203.PubMedGoogle Scholar
  17. 17.
    Urakawa, N., and Holand, W. C., Am. J. Physiol.207 (1964) 873.PubMedGoogle Scholar
  18. 18.
    Karaki, H., Nakagawa, N., and Urakawa, N., Br. J. Pharmac.81 (1984) 393.Google Scholar
  19. 19.
    Ishiyama, Y., Yabu, H., and Miyazaki, E., Jap. J. Physiol.25 (1975) 719.PubMedGoogle Scholar
  20. 20.
    Karaki, H., and Weiss, G. B., J. Pharmac. exp. Ther.211 (1979) 86.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • T. Nasu
    • 1
  1. 1.Department of Veterinary Pharmacology, Faculty of AgricultureYamaguchi UniversityYamaguchi(Japan)

Personalised recommendations