Experientia

, Volume 42, Issue 2, pp 162–163 | Cite as

Acute cold exposure increases the glucagon sensitivity of thermogenic metabolism in the rat

  • R. J. Howland
Short Communications Biochemistry and Biophysics, Metabolism, Neurobiology, Pharmacology

Summary

Administration of glucagon to rats at 25°C had no effect upon their VO2 while administration of noradrenaline or noradrenaline plus glucagon raised the VO2-At 5°C, noradrenaline had no effect upon the cold-enhanced VO2, while glucagon caused a rise of 13.7% implying increased glucagon sensitivity at 5°C. The glucagon-induced enhancement of VO2 was abolished by concurrent administration of noradrenaline.

Key words

Glucagon theromogenesis cold-exposure VO2 

Literature

  1. 1.
    Jansky, L., Biol. Rev.48 (1948) 85.Google Scholar
  2. 2.
    Foster, D. O., and Frydman, M. L., Can. J. Phyyiol. Pharmac.57 (1979) 257.Google Scholar
  3. 3.
    Nedergaard, J., and Lindberg, O., Int. Rev. Cytol.74 (1982) 187.PubMedGoogle Scholar
  4. 4.
    Helle, K. B., Boldstadt, G., Phil, K. E., and Jnudson, R., Crybiology17 (1980) 159).Google Scholar
  5. 5.
    Mory, G., Ricquier, D., Nechad, H., and Hernon, P., Am. J. Physiol. C242 (1980) 74.Google Scholar
  6. 6.
    Werner, R., and Wens-Capell, F., J. comp. Physiol. B.155 (1985) 219.CrossRefGoogle Scholar
  7. 7.
    Kuroshima, A., Yahata, T., and Habara, Y., J. therm. Biol.9 (1984) 81.CrossRefGoogle Scholar
  8. 8.
    Desautels, M., and Himms-Hagen, J., Can. J. Biochem.57 (1979) 968.PubMedGoogle Scholar
  9. 9.
    Nicholls, D. G., Biochim. biophys. Acta549 (1979) 1.PubMedGoogle Scholar
  10. 10.
    Seitz, H. J., Krone, W., Wilke, H., and Tarnowski, W., Pflügers Arch.239 (1981) 115).CrossRefGoogle Scholar
  11. 11.
    Vernikos, J., Dallman, M. F., Bonner, C., Katzen, A., and Shinako, J. Endocrinology110 (1982) 413.Google Scholar
  12. 12.
    Doi, K., and Kuroshima, A., Life Sci.30, 1982) 785.CrossRefPubMedGoogle Scholar
  13. 13.
    Howland, R.J., and Newman, K., J. appl. Physiol.58 (1985) 1031.PubMedGoogle Scholar
  14. 14.
    Sibata, H., and Nagasaka, T., Jap. J. Physiol.34 (1984) 103.PubMedGoogle Scholar
  15. 15.
    Kuroshima, A., Ohno, T., and Doi, K., Experientia33, 1977 (240).PubMedGoogle Scholar
  16. 16.
    Szekely, M., Kellermayer, M., and Cholnoky, G., Experientia26 (1970) 1314.PubMedGoogle Scholar
  17. 17.
    Minaire, Y., Forichon, J., Dallevet, G., and Jomain, M.J., Eur. J. appl. Physiol.46 (1981) 249.CrossRefGoogle Scholar
  18. 18.
    Minaire, Y., Vincent-Falquet, J.-C., Pernod, A., and Chatonnet, J., J. appl. Physiol.35 (1973) 51.PubMedGoogle Scholar
  19. 19.
    Himms-Hagen, J., J. biol. chem.236 (1961) 1032.PubMedGoogle Scholar
  20. 20.
    Joel, C. D., J. biol. Chem.241 (1966) 81.Google Scholar
  21. 21.
    Schade, D. S., and Eaton, R. P., Horm. Metab. Res.9 (1977) 253.PubMedGoogle Scholar
  22. 22.
    Helman, A., Gilbert, M., Pfister-Lemaire, N., Réach, G., and Assan, R., Endorinology115 (1984) 1722.Google Scholar
  23. 23.
    Howland, R. J., and Baroody, G. M. Experientinl38 (1982) 1116.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1986

Authors and Affiliations

  • R. J. Howland
    • 1
  1. 1.Division of Nutrition and Food Science, Department of BiochemistryUniversity of SureyGuildfordEngland

Personalised recommendations