Skip to main content
Log in

Platelets as a model for neurones?

  • Multi-author Review
  • The Platelet in Pathophysiological Research
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The multiple biochemical and pharmacological similarities existing between blood platelets and 5-hydroxytryptamine (5-HT)-containing neurones of the CNS point to the platelets as a reliable model for the biochemical characterization of 5-HT releasers and uptake blockers which interfere with the storage and the active carrier mechanism of 5-HT in the neurones, respectively. In addition, the affinity displayed by dopamine and by dopaminergic neurotoxin MPP+ for the platelet 5-HT transport and storage indicates also some similarities between platelets and the dopaminergic system of the CNS. Since human platelets contain almost exclusively monoamine oxidase type B (MAO-B), they can be used as a source for the purification and characterization of this human enzyme. Human platelets thus offer an excellent peripheral model to indirectly assess the degree and duration of MAO-B inhibition occurring in the CNS. To date, knowledge of the many biochemical mechanisms underlying platelet physiology is still fragmentary. In fact, the functional role of binding sites located on the platelet cytoplasmic membrane, i.e. their coupling to a specific transmembrane signalling mechanism, is still in need of a precise biochemical and physiological characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, K. I., Ieni, J. R., and Meyerson, L. R., Purification and properties of a human plasma endogenous modulator for the platelet tricyclic binding/serotonin transport complex. Biochem. biophys. Acta923 (1987) 8–21.

    Article  CAS  PubMed  Google Scholar 

  2. Affolter, H., Erne, P., Buergisser, E., and Pletscher, A., Ca++ as messenger of 5-HT2-receptor stimulation in human blood platelets. Naunyn-Schmiedebergs Arch. Pharmak.325 (1984) 337–342.

    Article  CAS  Google Scholar 

  3. Affolter, H., and Pletscher, A., Storage of biogenic amines in intact blood platelets of man. Dependence on proton gradient. Molec. Pharmac.22 (1982) 94–98.

    CAS  Google Scholar 

  4. Barbaccia, M. L., Gandolfi, O., Chuang, D. M., and Costa, E., Modulation of neuronal serotonin uptake by a putative endogenous ligand of imipramine recognition site. Proc. natl Acad. Sci. USA80 (1983) 5134–5138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Berneis, K. H., Da Prada, M., and Pletscher, A., Micelle formation between 5-hydroxytryptamine and adenosine triphosphate in platelet storage organelles. Science165 (1969) 913–914.

    Article  CAS  PubMed  Google Scholar 

  6. Bogdanski, D. F., Pletscher, A., Brodie, B. B., and Udenfriend, S., Identification and assay of serotonin in brain. J. Pharmac. exp. Ther.117 (1956) 82–88.

    CAS  Google Scholar 

  7. Born, G. V. R., Dearnley, R., Foulks, J. G., and Sharp, D. E., Quantification of the morphological reaction of platelets to aggregating agents and of its reversal by aggregation inhibitors. J. Physiol.280 (1978) 193–212.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bradley, P. B., Engel, G., Feniuk, W., Fozard, J. R., Humphrey, P. O. A., Middlemiss, D. N., Mylecharane, E. J., Richardson, B. P., and Saxena, P. R., Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology25 (1986) 563–576.

    Article  CAS  PubMed  Google Scholar 

  9. Buma, P., and Roubos, E. W., Ultrastructural demonstration of nonsynaptic release sites in the central nervous system of the snail Lymnaea stagnalis, the insect periplaneta americana and the rat. Neuroscience17 (1986) 867–879.

    Article  CAS  PubMed  Google Scholar 

  10. Burnstock, G., Purines as co-transmitters in adrenergic and cholinergic neurones. Prog. Brain Res.68 (1986) 193–203.

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, J. C., Marangos, P. J., Murphy, D. L., and Pearse, A. G. E., Neuron specific enolase (NSE) in human blood platelets: implications for the neuronal model in: Advances in the Biosciences, vol. 31, pp. 203–211. Eds B. Angrist, G. D. Burrows, M. Lader, O. Lingjaerde, G. Sedvall and D. Wheatley. Pergamon Press, New York 1981.

    Google Scholar 

  12. Carlsson, A., Pharmacological depletion of catecholamine stores. Pharmac. Rev.18 (1966) 541–549.

    CAS  Google Scholar 

  13. Carlsson, A., Shore, P. A., and Brodie, B. B., Release of serotonin from blood platelets by reserpine in vitro. J. Pharmac.120 (1957) 334–339.

    CAS  Google Scholar 

  14. Cesura, A. M., Galva, M. D., Imhof, R., and Da Prada, M., Binding of [3H]Ro 16-6491, a reversible inhibitor of monoamine oxidase type B, to human brain mitochondria and platelet membranes. J. Neurochem.48 (1987) 170–176.

    Article  CAS  PubMed  Google Scholar 

  15. Cesura, A. M., Müller, K., Peyer, M., and Pletscher, A., Solubilization of imipramine-binding protein from human blood platelets. Eur. J. Pharmac.96 (1983) 235–242.

    Article  CAS  Google Scholar 

  16. Cesura, A. M., Ritter, A., Picotti, G. B., and Da Prada, M., Uptake, release and subcellular localization of 1-methyl-4-phenyl-pyridinium in blood platelets. J. Neurochem.49 (1987) 138–145.

    Article  CAS  PubMed  Google Scholar 

  17. Costantini, M. G., and Bearl Mutter, A. F., Properties of the specific binding site for arginin-vasopressin in rat hippocampal synaptic membrane. J. biol. Chem.259 (1984) 11739–11745.

    Article  CAS  PubMed  Google Scholar 

  18. Daiguji, M., Meltzer, H. Y., and U’Prichard, D. C., Human plateletα1-adrenergic receptors: labeling with3H-yohimbine, a selective antagonist ligand. Life Sci.28 (1981) 2705–2717.

    Article  CAS  PubMed  Google Scholar 

  19. Daimon, T., and David, H., Uptake of3H-dopamine in megakaryocytes and blood platelets measured by quantitative electron-microscope autoradiography. Histochemistry85 (1986) 453–456.

    Article  CAS  PubMed  Google Scholar 

  20. Da Prada, M., Cesura, A. M., Kettler, R., Zürcher, G., and Haefely, W., Conversion of the neurotoxic precursor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into its pyridinium metabolite by human platelet monoamine oxidase type B. Neurosci. Lett.57 (1985) 257–262.

    Article  PubMed  Google Scholar 

  21. Da Prada, M., and Kettler, R., Uptake, metabolism and subcellular localization of MPTP and MPP+ in blood platelets. Clin. Neuropharm.9, Suppl. (1986) 347–349.

    Google Scholar 

  22. Da Prada, M., Keller, H. H., Burkard, W. P., Schaffner, R., Bonetti, E. P., Launay, J. M., and Haefely, W., Some neuropharmacological effects of Ro 11-2564 — A novel tricyclic antidepressant with potent inhibitory activity on the uptake of 5-HT, in: Typical and Atypical Antidepressants: Molecular Mechanisms, pp. 235–248. Eds E. Costa and G. Racagni, Raven Press, New York 1982.

    Google Scholar 

  23. Da Prada, M., Kettler, R., and Cesura, A. M., Rapid measurement of the MAO-B activity in human platelets by a newly developed assay with [3H]MPTP as substrate. Experientia42 (1986) 697.

    Google Scholar 

  24. Da Prada, M., Kettler, R., Keller, H. H., Kyburz, E., and Haefely, W. E., Ro 19-6327: a novel highly selective and reversible MAO-B inhibitor. Pharmac. Toxic.60, Suppl. 1 (1987) 10.

    Google Scholar 

  25. Da Prada, M., Lorez, H.P., and Richards, J.G., Platelet granules, in: The Secretory Granule, pp. 279–316. Eds A. M. Poisner and J. M. Trifaro. Elsevier Biomedical Press, Amsterdam 1982.

    Google Scholar 

  26. Da Prada, M., and Picotti, G. B., Content and subcellular localization of catecholamines and 5-hydroxytryptamine in human and animal blood platelets: monoamine distribution between platelets and plasma. Br. J. Pharmac. Chemother.65 (1979) 653–662.

    Article  Google Scholar 

  27. Da Prada, M., and Pletscher, A., Storage of exogenous monoamines and reserpine in 5-hydroxytryptamine organelles of blood platelets. Eur. J. Pharmac.7 (1969) 45–48.

    Article  CAS  Google Scholar 

  28. Da Prada, M., Pletscher, A., Tranzer, J. P. and Knuchel, H., Subcellular localization of 5-hydroxytryptamine and histamine in blood platelets. Nature216 (1967) 1315–1317.

    Article  PubMed  Google Scholar 

  29. Da Prada, M., Pletscher, A., Tranzer, J. P., and Knuchel, H., Action of reserpine on subcellular 5-hydroxytryptamine organelles of blood platelets. Life Sci.7 (1968) 477–480.

    Article  PubMed  Google Scholar 

  30. Da Prada, M., Richards, J. G., and Lorez, H. P., Blood platelets and biogenic monoamines: biochemical, pharmacological and morphological studies, in: Platelets: a Multidisciplinary Approach, pp. 331–353. Eds G. de Gaetano and S. Garattini. Raven Press, New York 1978.

    Google Scholar 

  31. Da Prada, M., Richards, J. G., and Kettler, R., Amine storage organelles in platelets, in: Platelets in Biology and Pathology, 2, pp. 107–145. Ed. J. L. Gordon. Elsevier Biomedical Press, Amsterdam 1981.

    Google Scholar 

  32. Davis, A., Molecular aspects of the imipramine ‘receptor’. Experientia40 (1984) 782–794.

    Article  CAS  Google Scholar 

  33. Davis A., Morris, J. M., and Tang, S. W., Partial characterization of solubilized platelet imipramine binding sites using a new probe. [3H]3-cyanoimipramine ([3H]Ro 11-2465). Eur. J. Pharmac.109 (1985) 97–104.

    Article  CAS  Google Scholar 

  34. De Camilli, P., and Navone, F., Regulated secretory pathways in neurons and their relation to the regulated secretory pathway of endocrine cells. Ann. N.Y. Acad. Sci.493 (1987) 461–479.

    Article  PubMed  Google Scholar 

  35. de Chaffoy de Courcelles, D., Leysen, J. E., De Clerck, F., Van Belle, H., and Janssen, P. A. J., Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J. biol. Chem.260 (1985) 7603–7605.

    Article  PubMed  Google Scholar 

  36. De Clerck, F., David, J. L., and Janssen, P. A. G., Inhibition of 5-hydroxytryptamine-induced and-amplified human platelet aggregation by ketanserin (R 41468), a selective 5-HT receptor antagonist. Agents Actions12 (1983) 388–397.

    Article  Google Scholar 

  37. Denney, R. M., Fritz, R. R., Patel, N. T., Widen, S. G., and Abell, C. W., Use of monoclonal antibody for comparative studies of monoamine oxidase B in mitochondrial extracts of human brain and peripheral tissues. Molec. Pharmac.24 (1983) 60–68.

    CAS  Google Scholar 

  38. Drummond, A. H., and Gordon, J. L., Specific binding sites for 5-hydroxytryptamine on rat blood platelets. Biochem. J.150 (1975) 129–132.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Erne, P., and Pletscher, A., Rapid intracellular release of calcium in human platelets by stimulation of 5-HT2-receptors. Br. J. Pharmac. Chemother.84 (1985) 545–549.

    Article  CAS  Google Scholar 

  40. Erne, P., and Pletscher, A., Vasopressin-induced activation of human blood platelets: prominent role of Mg2+. Naunyn Schmiedebergs Arch. Pharmak.329 (1985) 97–99.

    Article  CAS  Google Scholar 

  41. Fishkes, H., and Rudnick, G., Bioenergetics of serotonin transport by membrane vesicles derived from platelet dense granules. J. biol. Chem.25 (1982) 5671–5677.

    Article  Google Scholar 

  42. Fowler, C. J., and Ross, S. B., Selective inhibitors of monoamine oxidase A and B: biochemical, pharmacological and clinical properties. Med. Res. Rev.4 (1984) 323–358.

    Article  CAS  PubMed  Google Scholar 

  43. Fritz, R. R., Abell, C. W., Denney, R. M., Denney, C. B., Bessman, J. D., Boeringa, J. A., Castellani, S., Lankford, D. A., Malek-Ahmadi, P., and Rose, R. M., Platelets MAO concentration and molecular activity: I. New methods using a MAO-B-specific monoclonal antibody in a radioimmunoassay. Psych. Res.17 (1986) 129–140.

    Article  CAS  Google Scholar 

  44. Gabizon, R., and Schuldiner, S., The amine transporter from bovine chromaffin granules. J. biol. Chem.260 (1985) 3001–3005.

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Sevilla, J. A., Hollingsworth, P. J., and Smith, C. B.,α 2-Adrenoceptors on human platelets: selective labelling by [3H]clonidine and [3H]yohimbine and competitive inhibition by antidepressant drugs. Eur. J. Pharmac.74 (1981) 329–341.

    Article  CAS  Google Scholar 

  46. Gespach, C., Launay, J.-M., Emami, S., Bondoux, D., and Dreux, C., Biochemical and pharmacological characterization of histamine-mediated up-regulation of human platelet serotonin uptake. Evidence for a subclass of histamine H2 receptors (H2h) highly sensitive to H2 receptor antagonists. Agents Actions18 (1986) 115–119.

    Article  CAS  PubMed  Google Scholar 

  47. Given, M. B., and Longenecker, G. L., Characteristics of serotonin uptake and release by platelets, in: The Platelets. Physiology and Pharmacology, pp. 463–479. Ed. G. L. Longenecker. Academic Press, New York 1985.

    Google Scholar 

  48. Graf, M., and Pletscher, A., Shape change of blood platelets: a model for cerebral 5-hydroxytryptamine receptors? Br. J. Pharmac. Chemother.65 (1979) 601–608.

    Article  CAS  Google Scholar 

  49. Grant, J. A., and Scrutton, M. C., Novelα 2-adrenoceptors primarily responsible for inducing human platelet aggregation. Nature277 (1979) 659–661.

    Article  CAS  PubMed  Google Scholar 

  50. Gudat, F., Laubscher, A., Otten, U., and Pletscher, A., Shape change induced by biologically active peptides and nerve growth factor in blood platelets of rabbits. Br. J. Pharmac.74 (1981) 533–538.

    Article  CAS  Google Scholar 

  51. Hamilton, C. A., Deighton, N. M., Jones, C. R., and Reid, J. L., Changes in rabbit platelet α and β adrenoceptor number and platelet aggregation. Eur. J. Pharmac.130 (1986) 145–149.

    Article  CAS  Google Scholar 

  52. Hamilton, C. A., and Reid, J. L., Platelet α-adrenoceptors-A valid model for brain or vascular adrenoceptors? Br. J. clin. Pharmac.22 (1986) 623–626.

    Article  CAS  Google Scholar 

  53. Hoffman, B. B., De Lean, A., Wood, C. L., Shocken, D. D., and Lefkowitz, R. J., Alpha-adrenergic receptor subtypes: quantitative assessment by ligand binding. Life Sci.24 (1979) 1739–1746.

    Article  CAS  PubMed  Google Scholar 

  54. Hoffman, B. B., and Lefkowitz, R. J., Alpha-adrenergic receptor subtypes. New Engl. J. Med.302 (1980) 1390–1396.

    Article  CAS  PubMed  Google Scholar 

  55. Hoffman, B. B., and Lefkowitz, R. J., Radioligand binding studies of adrenergic receptors: new insights into molecular and physiological regulation. A. Rev. Pharmac. Toxic.20 (1980) 581–608.

    Article  CAS  Google Scholar 

  56. Hoffman, B. B., Michel, T., Brenneman, T. B., and Lefkowitz, R. J., Interactions of agonists with plateletα 2-adrenergic receptors. Endocrinology110 (1982) 926–932.

    Article  CAS  PubMed  Google Scholar 

  57. Hökfelt, T., Holets, V. R., Staines, W., Meister, B., Melander, T., Schalling, M., Schutzberg, M., Freedman, J., Björklund, H., Olson, L., Lindly, B., Elfin, L.-G., Lundberg, J. M., Lindgren, J. A., Samuelsson, B., Pernow, B., Terenius, L., Post, C., Everitt, B., and Goldstein, M., Coexistence of neuronal messengers — an overview. Prog. Brain Res.68 (1986) 33–70.

    Article  PubMed  Google Scholar 

  58. Humphrey, J. H., and Toh, C. C., Absorption of serotonin, 5-hydroxytryptamine and histamine by dog platelets. J. Physiol., Lond.124 (1954) 300–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Jahn, R., Schiebler, W., Ommet, C., and Greengard, P., A 38,000 dalton membrane protein (p 38) present in synaptic vesicles. Proc. natl Acad. Sci. USA82 (1985) 4137–4141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Johnson, R. G., Carty, S. E., and Scarpa, A., Coupling of H+ gradients of catecholamine transport in chromaffin granules. Ann. N.Y. Acad. Sci.456 (1985) 256–267.

    Article  Google Scholar 

  61. Kanner, B. I., Fishkes, H., Maron, R., Sharin, I., and Schuldiner, S., Reserpine as a competitive and reversible inhibitor of the catecholamine transporter of bovine chromaffin granules. FEBS Lett.100 (1979) 175–178.

    Article  CAS  PubMed  Google Scholar 

  62. Langer, S. Z., Raisman, R., Sechter, D., Gay, C., Loo, H., and Zarifian, E.,3H-Imipramine and3H-desipramine binding sites in depression, in: Frontiers in Biochemical and Pharmacological Research in Depression: Advances in Biochemical Psychopharmacology, vol. 39, pp. 113–125. Eds E. Usdin, M. Asberg, L. Bertilsson and F. Sjöqvist. Raven Press, New York 1984.

    Google Scholar 

  63. Langer, S. Z., Raisman, R., Tahraoui, L., Scatton, B., Niddam, R., Lee, C. R., and Claustre, Y., Substituted tetrahydro-β-carbolines are possible candidates as endogenous ligand of the [3H]imipramine recognition site. Eur. J. Pharmac.98 (1984) 153–154.

    Article  CAS  Google Scholar 

  64. Langer, S. Z., Zarifian, E., Briley, M. S., Raisman, R., and Sechter, D. M., High-affinity binding of [3H]imipramine in brain and platelets and its relevance to the biochemistry of affective disorders. Life Sci.29 (1981) 211–220.

    Article  CAS  PubMed  Google Scholar 

  65. Lapetina, E. G., Inositide-dependent and independent mechanisms in platelet activation, in: Phosphoinositides and Receptor Mechanisms, pp. 271–286. Alan R. Liss, Inc., New York 1986.

    Google Scholar 

  66. Laubscher, A., and Pletscher, A., Shape change and uptake of 5-hydroxytryptamine in human blood platelets: action of neuropsychotropic drugs. Life Sci.24 (1979) 1833–1840.

    Article  CAS  PubMed  Google Scholar 

  67. Laubscher, A., Pletscher, A., and Noll, H., Interaction of D-LSD with blood platelets of rabbits: shape change and specific binding. J. Pharmac. exp. Ther.216 (1981) 385–389.

    CAS  Google Scholar 

  68. Launay, J. M., Lemaître, B. J., Husson, H. P., Dreux, C., Hartmann, L., and Da Prada, M., Melatonin synthesis by rabbit platelets. Life Sci.31 (1982) 1487–1494.

    Article  CAS  PubMed  Google Scholar 

  69. Lenehan, T., Omer, M. O., Kenny, M., Lambe, R., and Darragh, A., The effect of multiple rising doses of Ro 11-2465 (serotonin uptake inhibitor) on serotonin content of human platelets. Psychopharmacology74 (1981) 1–3.

    Article  CAS  PubMed  Google Scholar 

  70. Leysen, J. E., Niemegeers, C. J. E., Van Nueten, J. M., and Laduron, P. M., [3H]Ketanserin (R 41468), a selective [3H] ligand for serotonin receptor binding sites. Molec. Pharmac.21 (1982) 301–314.

    CAS  Google Scholar 

  71. Lingjaerde, O., Blood platelets as a model system for studying the biochemistry of depression, in: Biological and Pharmacological Research in Depression: Advances in Biochemical Psychopharmacology, vol. 39, pp. 99–111. Eds E. Usdin, M. Asberg, L. Bertilsson and F. Sjöqvist. Raven Press, New York 1984.

    Google Scholar 

  72. Linjaerde, O., and Kildemo, O., Dopamine uptake in platelets: two different low-affinity, saturable mechanisms. Agents Actions11 (1981) 410–416.

    Article  Google Scholar 

  73. Malmgren, R., Platelets and biogenic amines. Platelets are poor investigative models for dopamine re-uptake. Psychopharmacology84 (1984) 480–485.

    CAS  PubMed  Google Scholar 

  74. Malmgren, R., Platelets and biogenic amines. 2. Indications for a discrete low affinity uptake mechanism shared by norepinephrine and 5-hydroxytryptamine in human platelets. Psychopharmacology90 (1986) 384–389.

    Article  CAS  PubMed  Google Scholar 

  75. Markey, S. P., and Schnuff, N. R., The pharmacology of the parkinsonism syndrome producing neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and structurally related compounds. Med. Res. Rev.6 (1986) 389–429.

    Article  CAS  PubMed  Google Scholar 

  76. Meyerson, L. R., Ieni, J. F., and Wennogle, L. P., Allosteric interaction between the site labeled by [3H] imipramine and the serotonin transporter in human platelets. J. Neurochem.48 (1987) 560–565.

    Article  CAS  PubMed  Google Scholar 

  77. Mills, D. C. B., and McFarlane, D. E., Platelet receptors, in: Platelets in Biology and Pathology, pp. 159–202. Ed. J.L. Gordon. Elsevier North-Holland, Amsterdam 1976.

    Google Scholar 

  78. Molinas, F. C., Wietzerbin, J., and Falcoff, E., Human platelets possess receptors for a lymphokine: demonstration of high specific receptors for Hu IFN-γ. J. Immun.138 (1987) 802–806.

    Article  CAS  PubMed  Google Scholar 

  79. Moore, J. T., Taylor, T., and Williams, G. H., Human platelet angiotensin II receptors: regulation by the circulating angiotensin level. J. clin. Endocr. Metab.58 (1984) 778–782.

    Article  CAS  PubMed  Google Scholar 

  80. Navone, F., Jahn, R., Digisia, G., Stukenbock, H., Greengard, P., and De Camilli, P., Protein p 38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J. Cell Biol.103 (1986) 2511–2527.

    Article  CAS  PubMed  Google Scholar 

  81. Niewiarowski, S., and Holt, J. C., Platelet α-granule proteins: biochemical and pathological aspects, in: The Platelets, Physiology and Pharmacology, pp. 49–83. Ed. G. L. Longenecker. Academic Press, New York 1985.

    Google Scholar 

  82. Oset-Gasque, M. J., Launay, J. M., and Gonzalez, M. P., GABAergic mechanisms in blood cells: their possible role, in: GABAergic Mechanisms in the Mammalian Periphery, pp. 305–324. Eds S. L. Erdö and N. G. Bowery, Raven Press, New York 1986.

    Google Scholar 

  83. Paul, S. M., Rehavi, M., Skolnick, P., and Goodwin, F. K., Demonstration of specific high-affinity binding sites for [3H]imipramine on human platelets. Life Sci.26 (1981) 953–959.

    Article  Google Scholar 

  84. Pearse, A. G. E., The diffuse neuroendocrine system: peptides, amines, placodes and the APUD theory, in: Progress in Brain Research, vol. 68, pp. 25–31. Eds T. Hökfelt, K. Fuxe and B. Pernow. Elsevier Science Publishers, Amsterdam 1986.

    Chapter  Google Scholar 

  85. Peroutka, S. J., and Snyder, S. H., Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Molec. Pharmac.16 (1979) 687–699.

    CAS  Google Scholar 

  86. Pletscher, A., Platelets as models for monoaminergic neurons, in: Essay in Neurochemistry and Neuropharmacology, vol. 3, pp. 49–99. Eds H. B. Youdim, W. Lovenberg, D. F. Sharman and J. R. Lagnado. J. Wiley & Sons, New York 1978.

    Google Scholar 

  87. Pletscher, A., and Affolter, H., The 5-hydroxytryptamine receptor of blood platelets. J. neural Transm.57 (1983) 233–242.

    Article  CAS  PubMed  Google Scholar 

  88. Pletscher, A., Affolter, H., Cesura, A. M., Erne, P., and Mueller, K., Blood platelet as model for neurons: similarities for the 5-hydroxytryptamine systems, in: Progress in Tryptophan and Serotonin Research, pp. 231–239. Eds H. G. Schlossenberger, W. Kochen, B. Linzen, and H. Steinhart. Walter de Gruyter & Co., Berlin-New York 1984.

    Google Scholar 

  89. Pletscher, A., Burkard, W. P., Tranzer, J. P., and Gey, K. F., Two sites of 5-hydroxytryptamine uptake in blood platelets. Life Sci.6 (1967) 273–280.

    Article  CAS  PubMed  Google Scholar 

  90. Pletscher, A., and Da Prada, M., The organelles storing 5-hydroxytryptamine in blood platelets, in: Biochemistry and Pharmacology of Platelets, pp. 261–286. Ciba Foundation Symp. 35. Elsevier, Amsterdam 1975.

    Google Scholar 

  91. Pletscher, A., Erne, P., Buergisser, E., and Ferracin, F., Activation of human blood platelets by arginin-vasopressin. Role of bivalent cations. Molec. Pharmac.28 (1985) 508–514.

    CAS  Google Scholar 

  92. Pletscher, A., and Laubscher, A., Blood platelets as model for neurons: use and limitations. J. neural Transm.16, Suppl. (1980) 7–16.

    CAS  Google Scholar 

  93. Regan, J. W., Barden, N., Lefkowitz, R. J., Caron, M. C., DeMarinis, R. M., Krog, A. J., Holden, K. G., Matthews, W. D., and Hieble, J. P., Affinity chromatography of human plateletα 2-adrenergic receptors. Proc. natl Acad. Sci. USA79 (1983) 7223–7227.

    Article  Google Scholar 

  94. Rehavi, M., Tracer, H., Rice, K., Skolnick, P., and Paul, S. M., [3H]2-Nitroimipramine: a selective ‘slowly-dissociating’ probe of the imipramine binding site (‘serotonin transporter’) in platelets and brain. Life Sci.32 (1983) 645–653.

    Article  CAS  PubMed  Google Scholar 

  95. Richards, J. G., and Da Prada, M., Uranaffin reaction: a new cytochemical technique for the localization of adenine nucleotides in organelles storing biogenic amines. J. Histochem. Cytochem.25 (1977) 1322–1336.

    Article  CAS  PubMed  Google Scholar 

  96. Richards, J. G., Da Prada, M., Würsch, J., and Lorez, H. P., Mapping monoaminergic neurons with [3H]reserpine by autoradiography. Neuroscience4 (1979) 937–950.

    Article  CAS  PubMed  Google Scholar 

  97. Roos, I., Ferracin, F., and Pletscher, A., Interaction of vasopressin with human blood platelets: dependency on Mg2+? Thromb. Haemos.56 (1986) 260–262.

    Article  CAS  Google Scholar 

  98. Schrier, R. W., Vasopressin. Raven Press, New York 1985.

    Google Scholar 

  99. Schuldiner, S., Gabizon, R., Maron, R., Suchi, R., and Stern, Y., The amine transporter from bovine chromaffin granules. Ann. N.Y. Acad. Sci.456 (1985) 268–278.

    Article  CAS  PubMed  Google Scholar 

  100. Shore, P. A., Pletscher, A., and Brodie, B. B., Release of platelet serotonin by reserpine, effect on hemostasis. J. Pharmac. exp. Ther.116 (1956) 51–52.

    Google Scholar 

  101. Siess, W., Stifel, M., Binder, H., and Weber, P. C., Activation of V1-receptors by vasopressin stimulates inositol phospholipid hydrolysis and arachidonate metabolism in human platelets. Biochem. J.233 (1986) 83–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Stacey, R. S., Uptake of 5-hydroxytryptamine by platelets. Br. J. Pharmac. Chemother.16 (1961) 284–295.

    Article  CAS  Google Scholar 

  103. Stahl, S. M., Platelets as pharmacological models for the receptors and biochemistry of monoaminergic neurons, in: The Platelets: Physiology and Pharmacology, pp. 307–340. Ed. G. L. Longenecker. Academic Press, New York 1985.

    Chapter  Google Scholar 

  104. Stahl, S. M., Ciaranello, R. D., and Berger, P. A. Platelet serotonin in schizophrenia and depression, in: Serotonin in Biological Psychiatry, Adv. Biochem. Psychopharm. vol. 34, pp. 183–198. Eds B. T. Ho, J. C. Schoolar and E. Usdin. Raven Press, New York 1982.

    Google Scholar 

  105. Sternberg, P. E., Ultrastructural organization of maturing megakaryocytes, in: Megakaryocytes Development and Function: Progress in Clinical and Biological Research, vol. 215, pp. 373–386. Eds R. F. Levine, N. Williams, J. Levin and B. L. Evatt. Alan R. Liss, Inc., New York 1986.

    Google Scholar 

  106. Tamir, H., Bebirian, R., Muller, F., and Casper, D., Differences between intracellular platelet and brain proteins that bind serotonin. J. Neurochem.35 (1980) 1033–1044.

    Article  CAS  PubMed  Google Scholar 

  107. Thibonnier, M., Solubilization of human platelet vasopressin receptors. Life Sci.40 (1987) 439–445.

    Article  CAS  PubMed  Google Scholar 

  108. Toth, L. A., and Elchisak, M. A., Pharmacological characterization of dopamine sulfoconjugation by human platelets. J. Pharmac. exp. Ther.240 (1987) 359–363.

    CAS  Google Scholar 

  109. Tuomisto, J., Platelet uptake of serotonin in pathological conditions, in: Advances in the Biosciences, vol. 31, pp. 153–159. Eds B. Angrist, G. D. Burrows, M. Lader, O. Lingjaerde, G. Sedvall and D. Wheatley. Pergamon Press, New York 1981.

    Google Scholar 

  110. Tranzer, J. P., Da Prada, M., and Pletscher, A., Ultrastructural localization of 5-hydroxytryptamine in blood platelets. Nature212 (1966) 1574–1575.

    Article  CAS  PubMed  Google Scholar 

  111. Tranzer, J. P., Da Prada, M., and Pletscher, A., Storage of 5-hydroxytryptamine in megakaryocytes. J. Cell Biol.52 (1972) 191–197.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Vanderwelt, M., Burn, D. S., and Haslam, R. J., Vasopressin inhibits the adenylate cyclase activity of human particulate fraction through V1 receptors. FEBS Lett.164 (1983) 340–344.

    Article  Google Scholar 

  113. Vittet, D., Rondot, A., Cantau, B., Launay, J.-M., and Chevillard, C., Nature and properties of human platelet vasopressin receptors. Biochem. J.233 (1986) 631–636.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Wennogle, L. P., Ashton, R. A., Schuster, D. I., Murphy, R. B., and Meyerson, L. R., 2-Nitroimipramine a photoaffinity probe for a serotonin uptake/tricyclic binding site. EMBO J.4 (1985) 971–977.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Wood, K., and Coppen, A., Platelet transport and receptor sites in depressive illness, in: Psychopharmacology: Recent Advances and Future Prospects, pp. 21–32. Ed. S. D. Iversen, Oxford University Press, Oxford 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Da Prada, M., Cesura, A.M., Launay, J.M. et al. Platelets as a model for neurones?. Experientia 44, 115–126 (1988). https://doi.org/10.1007/BF01952193

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952193

Key words

Navigation