Skip to main content
Log in

Nuclear organization and transcriptional silencing in yeast

  • Milti-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Transcriptional repression at the yeast silent mating type loci requires the formation of a nucleoprotein complex at specific cis-acting elements called silencers, which in turn promotes the binding of a histone-associated Sir-protein complex to adjacent chromatin. A similar mechanism of long-range transcriptional repression appears to function near telomeric repeat sequences, where it has been demonstrated that Sir3p is a limiting factor for the propagation of silencing. A combined immunofluorescence/in situ hybridization method for budding yeast was developed that maintains the three-dimensional structure of the nucleus. In wild-type cells the immunostaining of Sir3p, Sir4p and Rap1 colocalizes with Y′ subtelomeric sequences detected by in situ hybridization. All three antigens and the subtelomeric in situ hybridization signals are clustered in foci, which are often adjacent to, but not coincident with, nuclear pores. This colocalization of Rap1, Sir3p and Sir4p with telomeres is lost insir mutants, and also when Sir4p is overexpressed. To test whether the natural positioning of the twoHM loci, located roughly 10 and 25 kb from the ends of chromosome III, is important for silencer function, a reporter gene flanked by wild-type silencer elements was integrated at various internal sites on other yeast chromosomes. We find that integration at internal loci situated far from telomeres abrogates the ability of silencers to repress the reporter gene. Silencing can be restored by creation of a telomere at 13 kb from the reporter construct, or by insertion of 340 bp of yeast telomeric repeat sequence at this site without chromosomal truncation. Elevation of the internal nuclear pools of Sir1p, Sir3p and Sir4p can relieve the lack of repression at theLYS2 locus in an additive manner, suggesting that in wild-type cells silencer function is facilitated by its juxtaposition to a pool of highly concentrated Sir proteins, such as those created by telomere clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henriquez R., Blobel G. and Aris J. (1990) Isolation and sequencing ofNOP1. J. Biol. Chem.265: 2209–2215

    PubMed  Google Scholar 

  2. Walmsley R. M., Chan C. S. M., Tye B. K. and Petes T. (1984) Unusual DNA sequences associated with the ends of yeast chromosomes. Nature310: 157–160

    Article  PubMed  Google Scholar 

  3. Longtine M. S., Wilson N., Petracek M. and Berman J. (1989) A yeast telomere binding activity binds to two related telomere sequence motifs and is indistinguishable fromRAP1. Curr. Genetics138: 1025–1040

    Google Scholar 

  4. Gilson E., Roberge M., Giraldo R., Rhodes D. and Gasser S. M. (1993) Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites. J. Mol. Biol.231: 293–310

    Article  PubMed  Google Scholar 

  5. Gotta M., Laroche T., Formenton A., Maillet L., Scherthan H. and Gasser S. M. (1996) The clustering of telomeres and colocalization with Rap1, Sir3 and Sir4 proteins in wild-typeSaccharomyces cerevisiae. J. Cell. Biol.134: 1349–1363

    Article  PubMed  Google Scholar 

  6. Louis E. J. (1995) The chromosome ends ofSaccharomyces cerevisiae. Yeast11: 1553–1573

    Article  PubMed  Google Scholar 

  7. Thomas J. O. and Furber V. (1976) Yeast chromatin structure. FEBS Lett.66: 274–280

    Article  PubMed  Google Scholar 

  8. Grunstein M. (1990) Histone function in transcription. Annu. Rev. Cell. Biol.6: 643–678

    Article  PubMed  Google Scholar 

  9. Bradbury E. M., Maclean N. and Matthews H. R. (1981) DNA Chromatin and Chromosomes, pp. 281, Blackwell Scientific Publishers, Oxford

    Google Scholar 

  10. Nelson R. G. and Fangman W. L. (1979) Nucleosomal organization of the yeast 2-μm DNA plasmid: a eukaryotic minichromosome. Proc. Natl. Acad. Sci. USA76: 6515–6519

    PubMed  Google Scholar 

  11. Thoma F. (1992) Nucleosome positioning. Biochim. Biophys. Acta1130: 1–19

    PubMed  Google Scholar 

  12. Roth S. Y., Dean A. and Simpson R. T. (1990) Yeastα2 repressor positions nucleosomes inTRP1/ARS1 chromatin. Mol. Cell. Biol.10: 2247–2260

    PubMed  Google Scholar 

  13. Landsman D. (1996) Histone H1 inSaccharomyces cerevisiae: a double mystery solved? Trends in Biochem.21: 287–289

    Article  Google Scholar 

  14. Linder C. and Thoma F. (1994) Histone H1 expressed in binds to chromatin and affects survival, growth, transcription and plasmid stability but does not change nucleosomal spacing. Mol. Cell. Biol.14: 2822–2835

    PubMed  Google Scholar 

  15. Kolodrubetz D. and Burgum A. (1990) Duplicated NHP6 genes ofSaccharomyces cerevisiae encode proteins homologous to bovine high mobility group protein 1. J. Biol. Chem.265: 3234–3239

    PubMed  Google Scholar 

  16. Haggren W. and Kolodrubetz D. (1988) TheSaccharomyces cerevisiae ACP2 gene encodes an essential HMG1-like protein. Mol. Cell. Biol.8: 1282–1289

    PubMed  Google Scholar 

  17. Kruger W. and Herskowitz I. (1991) A negative regulator ofHO transcription, SIN1 (SPT2), is a nonspecific DNA-binding protein related to HMG1. Mol. Cell. Biol.11: 4135–4146

    PubMed  Google Scholar 

  18. Tremethick D. J. and Drew H. R. (1993) High mobility group proteins 14 and 17 can space nucleosomes in vitro. J. Biol. Chem.268: 11389–11393

    PubMed  Google Scholar 

  19. Saitoh Y. and Laemmli U. K. (1994) Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell76: 609–622

    Article  PubMed  Google Scholar 

  20. Finch J. T. and Klug A. (1976) Solenoidal model for super-structure in chromatin. Proc. Natl. Acad. Sci. USA.73: 1897

    PubMed  Google Scholar 

  21. Thoma F., Koller T. and Klug A. (1979) Involvement of histone H1 in the organization of the salt-dependent super-structures of chromatin. J. Cell Biol.83: 403–427

    Article  PubMed  Google Scholar 

  22. Rattner J. B., Saunders C., Davie J. R. and Hamkalo B. A. (1982) Ultrastructural organization of yeast chromatin. J. Cell. Biol.92: 217–222

    Article  Google Scholar 

  23. Lowary P. T. and Widom J. (1989) Higher-order structure ofSaccharomyces cerevisiae chromatin. Proc. Natl. Acad. Sci. USA86: 8266–8270

    PubMed  Google Scholar 

  24. Guacci V., Hogan E. and Koshland D. (1994) Chromosome condensation and sister chromatid pairing in budding yeast. J. Cell. Biol.125: 517–530

    Article  PubMed  Google Scholar 

  25. Trask B., Pinkel D. and van den Engh G. (1989) The proximity of DNA sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics5: 710–717

    Article  PubMed  Google Scholar 

  26. van der Engh G., Sachs R. and Trask B. J. (1992) Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model. Science257: 1410–1413

    PubMed  Google Scholar 

  27. Lohr D. and Hereford L. (1979) Yeast chromatin is uniformly digested by Dnase I. Proc. Natl. Acad. Sci. USA 76: 4285–4288

    PubMed  Google Scholar 

  28. Sledziewski A. and Young E. T. (1982) Chromatin conformational changes accompany transcriptional activation of a glucose-repressed gene inSaccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA79: 253–256

    PubMed  Google Scholar 

  29. Nasmyth K. A. (1982) The regulation of yeast mating-type chromatin structure by SIR: an action at a distance affecting both trascription and transposition. Cell30: 567–578

    Article  PubMed  Google Scholar 

  30. Bergman L. W. and Kramer R. A. (1983) Modulation of chromatin structrure associated with derepression of the acid phosphatase gene ofSaccharomyces cerevisiae. J. Biol. Chem.258: 7223–7227

    PubMed  Google Scholar 

  31. Lohr D. and Hopper J. E. (1985) The relationship of regulatory proteins and DNase I hypersensitive sites in the yeastGAL1-10 genes. Nucl. Acids Res.13: 8409–8423

    PubMed  Google Scholar 

  32. Szent-Gyorgyi C., Finkelstein D. B. and Garrard W. T. (1987) Sharp boundaries demarcate the chromatin structure of a yeast heat-shock gene. J. Mol. Biol.193: 71–80

    Article  PubMed  Google Scholar 

  33. Cavalli G. and Thoma F. (1993) Chromatin transitions during activation and repression of galactose-regulated genes in yeast. EMBO J.12: 4603–4613

    PubMed  Google Scholar 

  34. Miller A. M. and Nasmyth K. A. (1994) Role of DNA replication in the repression of silent mating type loci in yeast. Nature312: 247–251

    Article  Google Scholar 

  35. Laurenson P. and Rine J. (1992) Silencers, silencing and heritable transcriptional states. Microbiol. Rev.56: 543–560

    PubMed  Google Scholar 

  36. Gottschling D. E., Aparicio O. M., Billington B. L. and Zakian V. A. (1990) Position effect atS. cerevisiae telomeres: reversible repression of Pol II transcription. Cell63: 751–762

    Article  PubMed  Google Scholar 

  37. Gottschling D. E. (1992) Telomere-proximal DNA inSaccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc. Natl. Acad. Sci. USA89: 4062–4065

    PubMed  Google Scholar 

  38. Renauld H., Aparicio O. M., Zierath P. D., Billington B. L., Chhablani S. K. and Gottschling D. E. (1993) Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength and bySIR3 dosage. Genes Dev.7: 1133–1145

    PubMed  Google Scholar 

  39. Paro R. (1993) Mechanisms of heritable gene repression during development ofDrosophila. Curr. Op. Cell. Biol.5: 999–1005

    Article  PubMed  Google Scholar 

  40. Henikoff S. (1992) Position effect and related phenomena. Curr. Op. Genes Dev.2: 907–912

    Article  Google Scholar 

  41. Butner K. and Lo C. W. (1986) Modulation of tk expression in mouse pericentromeric heterochromatin. Mol. Cell. Biol.6: 4440–4449

    PubMed  Google Scholar 

  42. Stavenhagen J. B. and Zakian V. A. (1994) Internal tracts of telomeric DNA act as silencers inSaccharomyces cerevisiae. Genes Dev.8: 1411–1422

    PubMed  Google Scholar 

  43. Liu C., Mao X. and Lustig A. J. (1994) Mutational analysis defines a C-terminal tail domain ofRAP1 essential for telomeric silencing inS. cerevisiae. Genetics138: 1025–1040

    PubMed  Google Scholar 

  44. Buck S. W. and Shore D. (1995) Action of a RAP1 carboxyterminal silencing domain reveals an underlying competition betweenHMR and telomeres in yeast. Genes Dev.9: 370–384

    PubMed  Google Scholar 

  45. Shore D. and Nasmyth K. (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell51: 721–732

    Article  PubMed  Google Scholar 

  46. Buchman A. R., Kimmerly W. J., Rine J. and Kornberg R. D. (1988) Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences and telomeres inSaccharomyces cerevisiae. Mol. Cell. Biol.8: 210–225

    PubMed  Google Scholar 

  47. Micklem G., Rowley A., Harwood J., Nasmyth K. and Diffley J. F. X. (1993) Yeast origin recognition complex is involved in DNA replication and transcriptional silencing. Nature366: 87–89

    Article  PubMed  Google Scholar 

  48. Bell S. P., Kobayashi R. and Stillman B. (1993) Yeast origin recognition complex functions in transcription silencing and DNA replication. Science262: 1844–1848

    PubMed  Google Scholar 

  49. Cockell M., Palladino F., Laroche T., Kyrion G., Liu C., Lustig A. J. et al. (1995) The C-termini of Sir4 and Rap1 affect Sir3 localization in yeast cells: evidence for a multicomponent complex required for telomeric silencing. J. Cell. Biol.129: 909–924

    Article  PubMed  Google Scholar 

  50. Marshall M., Mahoney D., Rose A., Hicks J. B. and Broach J. R. (1987) Functional domains ofSIR4, a gene required for position effect regulation inSaccharomyces cerevisiae. Mol. Cell. Biol.7: 4441–4452

    PubMed  Google Scholar 

  51. Moretti P., Freeman K., Coodly L. and Shore D. (1994) Evidence that a complex of SIR proteins interacts with the silencer and telomere binding proteinRAP1. Genes Dev.8: 2257–2269

    PubMed  Google Scholar 

  52. Hecht A., Laroche T., Strahl-Bolsinger S., Gasser S. M. and Grunstein M. (1995) Histone H3 and H4 N termini interact with the silent information regulators Sir3 and Sir4 in vitro: a molecular model for the formation of heterochromatin in yeast. Cell80: 583–592

    Article  PubMed  Google Scholar 

  53. Braunstein A., Rose A. B., Holmes S. G., Allis C. D. and Broach J. R. (1993) Trancriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev.7: 592–604

    PubMed  Google Scholar 

  54. Chen X. and Clark-Walker G. D. (1994)sir2 mutants ofKluyveromyces lactis are hypersensitive to DNA targeting drugs. Mol. Cell. Biol.14: 4501–4508

    PubMed  Google Scholar 

  55. Dorn R., Heyman R. and Reuter G. (1986) Suppressor mutation of position effect variegation inDrosophila melanogaster affecting chromatin properties. Chromosoma93: 398–403

    Article  Google Scholar 

  56. Wright J. H., Gottschling D. E. and Zakian V. A. (1992)Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev.6: 197–210

    PubMed  Google Scholar 

  57. Shore D. (1994) RAP1: a protein regulator in yeast. Trends Gen.10: 408–412

    Article  Google Scholar 

  58. Gilson E. and Gasser S. M. (1995) Repressor activator protein 1 and its ligands: organising chromatin domains. Nucl. Acids Mol. Biol.9: 308–327

    Google Scholar 

  59. Conrad M. N., Wright J. H., Wolf A. J. and Zakian V. A. (1990) Rap1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell63: 739–750

    Article  PubMed  Google Scholar 

  60. Lustig A. J., Kurtz S. and Shore D. (1990) Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science250: 549–553

    PubMed  Google Scholar 

  61. Kyrion G., Boakye K. E. and Lustig A. J. (1992) C-terminal truncation of RAP1 results in the deregulation of telomere size, stability and function inSaccharomyces cerevisiae. Mol. Cell. Biol.,12: 5159–5173

    PubMed  Google Scholar 

  62. Klein F., Laroche T., Cardenas M. E., Hofmann J. F.-X., Schweizer D. and Gasser S. M. (1992) Localization of Rap1 and topoisomerase II in nuclei and meiotic chromosomes of yeast. J. Cell. Biol.117: 935–948

    Article  PubMed  Google Scholar 

  63. Palladino F., Laroche T., Gilson E., Axelrod A., Pillus L. and Gasser S. M. (1993) SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell75: 543–555

    Article  PubMed  Google Scholar 

  64. Lundblad V. and Szostak J. W. (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell57: 633–643

    Article  PubMed  Google Scholar 

  65. Lundblad V. and Blackburn E. H. (1993) An alternative pathway for yeast telomeres maintenance rescuesest1 senescence in yeast. Cell73: 347–360

    Article  PubMed  Google Scholar 

  66. Palladino F., Laroche T., Gilson E., Pillus L. and Gasser S. M. (1993) The positioning of yeast telomeres depends on SIR3, SIR4 and the integrity of the nuclear membrane. Cold Spring Harbor Symp. Quant. Biol.58: 733–746

    Google Scholar 

  67. Doye V., Wepf R. and Hurt E. C. (1994) A novel nuclear pore protein Nup133p with distinct roles in poly(A)+ RNA transport and nuclear pore distribution. EMBO J.13: 6062–6075

    PubMed  Google Scholar 

  68. Diffley J. F. X. and Stillman B. (1989) Transcriptional silencing and lamins. Nature342: 24

    Article  Google Scholar 

  69. Stavenhagen J. B. and Zakian V. A. (1994) Internal tracts of telomeric DNA act as silencers inSaccharomyces cerevisiae. Genes Dev.8: 1411–1422

    PubMed  Google Scholar 

  70. Maillet L., Boscheron C., Gotta M., Marcand S., Gilson E. and Gasser S. M. (1996) Evidence for silencing subcompartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev.10: 1796–1811

    PubMed  Google Scholar 

  71. Thompson J. S., Johnson L. M. and Grunstein M. (1994) Specific repression of the yeast silent mating type locusHMR by an adjacent telomere. Mol. Cell. Biol.14: 446–455

    PubMed  Google Scholar 

  72. Lustig A. J., Liu C., Zhang C. and Hanish J. P. (1996) Tethered Sir3p nucleates silencing at telomeres and internal loci inSaccharomyces cerevisiae. Mol. Cell. Biol.16: 2483–2495

    PubMed  Google Scholar 

  73. Marcand S., Moretti P., Buck S., Gilson E. and Shore D. (1996) Silencing of genes at non telomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rapl protein. Genes Dev.10: 1297–1309

    PubMed  Google Scholar 

  74. Rabl C. (1885) Uber Zellteilung. Morphol. Jahrbuch.10: 214–230

    Google Scholar 

  75. Spector D. L. (1993) Macromolecular domains within the cell nucleus. Ann. Rev. Cell. Biol.9: 265–315

    PubMed  Google Scholar 

  76. Funabiki H., Hagan I., Uzawa S. and Yanagida M. (1993) Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J. Cell. Biol.121: 961–976

    Article  PubMed  Google Scholar 

  77. Nimmo E. R., Cranston G. and Allshire R. C. (1994) Telomere associated breakage in fission yeast result in variegated expression of adjacent genes. EMBO J.13: 3801–3811

    PubMed  Google Scholar 

  78. Allshire R. C., Nimmo E. R., Ekwall K., Javerzat J. P. and Cranston G. (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev.9: 218–233

    PubMed  Google Scholar 

  79. Messmer S., Franke A., and Paro R. (1992) Analysis of the functional role of thePolycomb chromodomain inDrosophila melanogaster. Genes Dev.6: 1241–1254

    PubMed  Google Scholar 

  80. Dernburg A. F., Broman K. W., Fung J. C., Marshall W. F., Philips J., Agard D. A. et al. (1996) Perturbation of nuclear architecture by long distance chromosome interactions. Cell85: 745–759

    Article  PubMed  Google Scholar 

  81. Slatis H. M. (1955) Position effects at thebrown locus inDrosophila melanogaster. Genetics40: 5–23

    Google Scholar 

  82. Henikoff S. (1994) A reconsideration of the mechanism of position effect. Genetics138: 1–5

    PubMed  Google Scholar 

  83. Kyrion G., Liu C., Cheng L. and Lustig A. J. (1993) RAP1 and telomere structure regulate telomere position effects inSaccharomyces cerevisiae. Genes Dev.7: 1146–1159

    PubMed  Google Scholar 

  84. Hardy C. F., Sussel L. and Shore D. (1992) A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev.6: 801–814

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Gasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotta, M., Gasser, S.M. Nuclear organization and transcriptional silencing in yeast. Experientia 52, 1136–1147 (1996). https://doi.org/10.1007/BF01952113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952113

Key words

Navigation