, Volume 52, Issue 12, pp 1130–1135 | Cite as

Translational control of endogenous and recoded nuclear genes in yeast mitochondria: Regulation and membrane targeting

  • T. D. Fox
Milti-Author Reviews


Mitochondrial gene expression in yeast,Saccharomyces cerevisiae, depends on translational activation of individual mRNAs by distinct proteins encoded in the nucleus. These nuclearly coded mRNA-specific translational activators are bound to the inner membrane and function to mediate the interaction between mRNAs and mitochondrial ribosomes. This complex system, found to date only in organelles, appears to be an adaptation for targeting the synthesis of mitochondrially coded integral membrane proteins to the membrane. In addition, mRNA-specific translational activation is a rate-limiting step used to modulate expression of at least one mitochondrial gene in response to environmental conditions. Direct study of mitochondrial gene regulation and the targeting of mitochondrially coded proteins in vivo will now be possible using synthetic genes inserted into mtDNA that encode soluble reporter/passenger proteins.

Key words

Saccharomyces cerevisiae mitochondria mRNA-specific translational activation synthetic genes gene regulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gray M. W. (1993) Origin and evolution of organelle genomes. Curr. Opin. Genet. Dev.3: 884–890CrossRefPubMedGoogle Scholar
  2. 2.
    Attardi G. and Schatz G. (1988) Biogenesis of mitochondria. A. Rev. Cell Biol.4: 289–333Google Scholar
  3. 3.
    Dieckmann C. L. and Staples R. R. (1994) Regulation of mitochondrial gene expression inSaccharomyces cerevisiae. Int. Rev. Cytol.152: 145–181PubMedGoogle Scholar
  4. 4.
    Grivell L. A. (1995) Nucleo-mitochondrial interactions in mitochondrial gene expression. Crit. Rev. Biochem. Molec. Biol.30: 121–164Google Scholar
  5. 5.
    Fox T. D. (1996) Genetics of mitochondrial translation. In: Translational Control, pp. 733–758, Hershey J. W. B., Matthews M. B. and Sonenberg N. (eds), Cold Spring Harbor Press, Cold Spring Harbor, NYGoogle Scholar
  6. 6.
    Jaehning J. A. (1991) Sigma factor relatives in eukaryotes. Science253: 859PubMedGoogle Scholar
  7. 7.
    Masters B. S., Stohl L. L. and Clayton D. A. (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell51: 89–99CrossRefPubMedGoogle Scholar
  8. 8.
    Cermakian N., Ikeda T., Cedergren R. and Gray M. W. (1996) Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucl. Acids Res.24: 648–654CrossRefPubMedGoogle Scholar
  9. 9.
    Chen B., Kubelik A. R., Mohr S. and Breitenberger C. A. (1996) Cloning and characterization of theNeurospora crassa cyt-5 gene: A nuclear-coded mitochondrial RNA polymerase with a polyglutamine repeat. J. Biol. Chem.271: 6537–6544CrossRefPubMedGoogle Scholar
  10. 10.
    Pan C., Sirum-Connolly K. and Mason T. L. (1993) Essential features of the peptidyl transferase center in the yeast mitochondrial ribosome. In: The Translational Apparatus: Structure, Function, Regulation, Evolution, pp. 587–598, Nierhaus K. H., Franceschi F., Subramanian A. R., Erdmannm V. A. and Wittman-Liebold B. (eds), Plenum Press, New YorkGoogle Scholar
  11. 11.
    Grohmann L., Kitakawa M., Isono K., Goldschmidt-Reisin S. and Graack H.-R. (1994) The yeast nuclear geneMRP-L13 codes for a protein of the large subunit of the mitochondrial ribosome. Curr. Genet.26: 8–14.CrossRefPubMedGoogle Scholar
  12. 12.
    Ebner E., Mennucci L. and Schatz G. (1973) Mitochondrial assembly in respiration-deficient mutants ofSaccharomyces cerevisiae. I. Effect of nuclear mutations on mitochondrial protein synthesis. J. Biol. Chem.248: 5360–5368PubMedGoogle Scholar
  13. 13.
    Ebner E., Mason T. L. and Schatz G. (1973) Mitochondrial assembly in respiration-deficient mutants ofSaccharomyces cerevisiae. II. Effect of nuclear and extrachromosomal mutations on the formation of cytochromec oxidase. J. Biol. Chem.248: 5369–5378PubMedGoogle Scholar
  14. 14.
    Ono B.-I., Fink G. and Schatz G. (1975) Mitochondrial assembly in respiration-deficient mutants ofSaccharomyces cerevisiae: Effects of nuclear amber suppressors on the accumulation of a mitochondrially made subunit of cytochromec oxidase. J. Biol. Chem.250: 775–782PubMedGoogle Scholar
  15. 15.
    Cabral F. and Schatz G. (1978) Identification of cytochromec oxidase subunits in nuclear yeast mutants lacking the functional enzyme. J. Biol. Chem.253: 4396–4401PubMedGoogle Scholar
  16. 16.
    Costanzo M. C. and Fox T. D. (1990) Control of mitochondrial gene expression inSaccharomyces cerevisiae. A. Rev. Genet.24: 91–113CrossRefGoogle Scholar
  17. 17.
    Müller P. P., Reif, M. K., Zonghou S., Sengstag C., Mason T. L. and Fox T. D. (1984) A nuclear mutation that post-transcriptionally blocks accumulation of a yeast mitochondrial gene product can be suppressed by a mitochondrial gene rearrangement. J. Molec. Biol.175: 431–452CrossRefPubMedGoogle Scholar
  18. 18.
    Costanzo M. C. and Fox T. D. (1986) Product ofSaccharomyces cerevisiae nuclear genePET494 activates translation of a specific mitochondrial mRNA. Molec. Cell. Biol. 6: 3694–3703PubMedGoogle Scholar
  19. 19.
    Poutre C. G. and Fox T. D. (1987)PET111, aSaccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochromec oxidase subunit II. Genetics115: 637–647PubMedGoogle Scholar
  20. 20.
    Mulero J. J. and Fox T. D. (1993)PET111 acts in the 5′-leader of theSaccharomyces cerevisiae mitochondrialCOX2 mRNA to promote its translation. Genetics133: 509–516PubMedGoogle Scholar
  21. 21.
    Fox T. D. (1986) Nuclear gene products required for translation of specific mitochondrially coded mRNAs in yeast. Trends Genet.2: 97–100CrossRefGoogle Scholar
  22. 22.
    Gillham N. W., Boynton J. E. and Hauser C. R. (1994) Translational regulation of gene expression in chloroplasts and mitochondria. A. Rev. Genet.28: 71–93CrossRefGoogle Scholar
  23. 23.
    Costanzo M. C., Seaver E. C. and Fox T. D. (1986) At least two nuclear gene products are specifically required for translation of a single yeast mitochondrial mRNA. EMBO J.5: 3637–3641PubMedGoogle Scholar
  24. 24.
    Costanzo M. C., Seaver E. C. and Fox T. D. (1989) ThePET54 gene ofSaccharomyces cerevisiae: Characterization of a nuclear gene encoding a mitochondrial translational activator and subcellular localization of its product. Genetics122: 297–305PubMedGoogle Scholar
  25. 25.
    Fox T. D., Costanzo M. C., Strick C. A., Marykwas D. L., Seaver E. C. and Rosenthal J. K. (1988) Translational regulation of mitochondrial gene expression by nuclear genes ofSaccharomyces cerevisiae. Phil. Trans. Royal Soc. Lond. B319: 97–105Google Scholar
  26. 26.
    Kloeckener-Gruissem B., McEwen J. E., and Poyton R. O. (1988) Identification of a third nuclear protein-coding gene required specifically for posttranscriptional expression of the mitochondrialCOX3 gene inSaccharomyces cerevisiae. J. Bacteriol.170: 1399–1402PubMedGoogle Scholar
  27. 27.
    Valencik M. L. and McEwen J. E. (1991) Genetic evidence that different functional domains of thePET54 gene product facilitate expression of the mitochondrial genesCOX1 andCOX3 inSaccharomyces cerevisiae. Molec. Cell. Biol.11: 2399–2405PubMedGoogle Scholar
  28. 28.
    McMullin T. W. and Fox T. D. (1993)COX3 mRNA-specific translational activator proteins are associated with the inner mitochondrial membrane inSaccharomyces cerevisiae. J. Biol. Chem.268: 11737–11741PubMedGoogle Scholar
  29. 29.
    Fields S. and Sternglanz R. (1994) The two-hybrid system: an assay for protein-protein interactions. Trends Genet.10: 286–292CrossRefPubMedGoogle Scholar
  30. 30.
    Brown N. G., Costanzo M. C. and Fox T. D. (1994) Interactions among three proteins that specifically activate translation of the mitochondrialCOX3 mRNA inSaccharomyces cerevisiae. Molec. Cell. Biol.14: 1045–1053PubMedGoogle Scholar
  31. 31.
    Rödel G. (1986) Two yeast nuclear genes,CBS1 andCBS2, are required for translation of mitochondrial transcripts bearing the 5′-untranslatedCOB leader. Curr. Genet.11: 41–45CrossRefPubMedGoogle Scholar
  32. 32.
    Rödel G. and Fox T. D. (1987) The yeast nuclear geneCBS1 is required for translation of mitochondrial mRNAs bearing thecob 5′-untranslated leader. Molec. Gen. Genet.206: 45–50CrossRefPubMedGoogle Scholar
  33. 33.
    Michaelis U. and Rödel G. (1990) Identification of CBS2 as a mitochondrial protein inSaccharomyces cerevisiae. Molec. Gen. Genet.223: 394–400PubMedGoogle Scholar
  34. 34.
    Michaelis U., Körte A. and Rödel G. (1991) Association of cytochromeb translational activator proteins with the mitochondrial membrane: implications for cytochromeb expression in yeast. Molec. Gen. Genet.230: 177–185CrossRefPubMedGoogle Scholar
  35. 35.
    Strick C. A. and Fox T. D. (1987)Saccharomyces cerevisiae positive regulatory genePET111 encodes a mitochondrial protein that is translated from an mRNA with a long 5′ leader. Molec. Cell. Biol.7: 2728–2734PubMedGoogle Scholar
  36. 36.
    Costanzo M. C. and Fox T. D. (1988) Specific translational activation by nuclear gene products occurs in the 5′ untranslated leader of a yeast mitochondrial mRNA. Proc. Natl. Acad. Sci. USA85: 2677–2681PubMedGoogle Scholar
  37. 37.
    Costanzo M. C. and Fox T. D. (1993) Suppression of a defect in the 5′-untranslated leader of the mitochondrialCOX3 mRNA by a mutation affecting an mRNA-specific translational activator protein. Molec. Cell. Biol.13: 4806–4813PubMedGoogle Scholar
  38. 38.
    Wiesenberger G., Costanzo M. C. and Fox T. D. (1995) Analysis of theSaccharomyces cerevisiae mitochondrialCOX3 mRNA 5′-untranslated leader: translational activation and mRNA processing. Molec. Cell. Biol. 15: 3291–3300PubMedGoogle Scholar
  39. 39.
    Mittelmeier T. M. and Dieckmann C. L. (1995) In vivo analysis of sequences required for translation of cytochromeb transcripts in yeast mitochondria. Molec. Cell. Biol.15: 780–789PubMedGoogle Scholar
  40. 40.
    Hardy C. M. and Clark-Walker G. D. (1990) Nucleotide sequence of the cytochrome oxidase subunit 2 andval-tRNA genes and surrounding sequences fromKluyveromyces lactis K8 mitochondrial DNA. Yeast6: 403–410CrossRefPubMedGoogle Scholar
  41. 41.
    Clark-Walker G. D. and Weiller G. F. (1994) The structure of the small mitochondrial DNA ofKluyveromyces thermotolerans is likely to reflect the ancestral gene order in fungi. J. Molec. Evol.38: 593–601.PubMedGoogle Scholar
  42. 42.
    Mulero, J. J. and Fox T. D. (1993) Alteration of theSaccharomyces cerevisiae COX2 5′-untranslated leader by mitochondrial gene replacement and functional interaction with the translational activator protein PET111. Molec. Biol. Cell4: 1327–1335PubMedGoogle Scholar
  43. 43.
    Haffter P., McMullin T. W. and Fox T. D. (1990) A genetic link between an mRNA-specific translational activator and the translation system in yeast mitochondria. Genetics125: 495–503PubMedGoogle Scholar
  44. 44.
    McMullin T. W., Haffter, P. and Fox T. D. (1990) A novel small subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator. Molec. Cell. Biol.10: 4590–4595PubMedGoogle Scholar
  45. 45.
    Haffter P., McMullin T. W. and Fox T. D. (1991) Functional interactions among two yeast mitochondrial ribosomal proteins and an mRNA-specific translational activator. Genetics127: 319–326PubMedGoogle Scholar
  46. 46.
    Haffter P. and Fox T. D. (1992) Suppression of carboxy-terminal truncations of the yeast mitochondrial mRNA-specific translational activator PET122 by mutations in two new genes,MRP17 andPET127. Molec. Gen. Genet.235: 64–73CrossRefPubMedGoogle Scholar
  47. 47.
    Partaledis J. A. and Mason, T. L. (1988) Structure and regulation of a nuclear gene inSaccharomyces cerevisiae that specifies MRP13, a protein of the small subunit of the mitochondrial ribosome. Molec. Cell. Biol.8: 3647–3660PubMedGoogle Scholar
  48. 48.
    Poyton R. O., Duhl, D. M. J. and Clarkson G. H. D. (1992) Protein export from the mitochondrial matrix. Trends in Cell Biol.2: 369–375CrossRefGoogle Scholar
  49. 49.
    Herrmann J. M., Koll H., Cook R. A., Neupert W. and Stuart R. A. (1995) Topogenesis of cytochrome oxidase subunit II: mechanisms of protein export from the mitochondrial matrix. J. Biol. Chem.270: 27079–27086CrossRefPubMedGoogle Scholar
  50. 50.
    Groot G. S. P., Mason T. L. and Van Harten-Loosbrock N. (1979)Var1 is associated with the small ribosomal subunit of mitochondrial ribosomes in yeast. Molec. Gen. Genet.174: 339–342CrossRefPubMedGoogle Scholar
  51. 51.
    Terpstra P., Zanders E. and Butow R. A. (1979) The association of varl with the 38S mitochondrial ribosomal subunit in yeast. J. Biol. Chem.254: 12653–12661PubMedGoogle Scholar
  52. 52.
    Myers A. M., Pape L. K. and Tzagoloff A. (1985) Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes inSaccharomyces cerevisiae. EMBO J.4: 2087–2092PubMedGoogle Scholar
  53. 53.
    Sanchirico M., Tzellas A., Fox T. D., Conrad-Webb H., Perlman P. S. and Mason T. L. (1995) Relocation of the unusualVAR1 gene from the mitochondrion to the nucleus. Biochem. Cell Biol.73: 987–995PubMedGoogle Scholar
  54. 54.
    Marykwas D. L. and Fox T. D. (1989) Control of theSaccharomyces cerevisiae regulatory genePET494: transcriptional repression by glucose and translational induction by oxygen. Molec. Cell. Biol.9: 484–491PubMedGoogle Scholar
  55. 55.
    Miller J. H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  56. 56.
    Sherman F. (1991) Getting started with yeast. Meth. Enzymol.194: 3–21PubMedGoogle Scholar
  57. 57.
    Rose M. and Botstein D. (1983) Construction and use of gene fusions to lacZ (β-galactosidase) that are expressed in yeast. Meth. Enzymol.101: 167–180PubMedGoogle Scholar
  58. 58.
    Vestweber D. and Schatz G. (1988) A chimeric mitochondrial precursor protein with internal disulfide bridges blocks import of authentic precursors into mitochondria and allows quantitation of import sites. J. Cell Biol.107: 2037–2043CrossRefPubMedGoogle Scholar
  59. 59.
    Dujon B. (1981) Mitochondrial genetics and functions. In: The Molecular Biology of the YeastSaccharomyces, Life Cycle and Inheritance, pp. 505–635, Strathern J. N., Jones E. W. and Broach J. R. (eds), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  60. 60.
    Fox T. D. (1987) Natural variation in the genetic code. A. Rev. Genet.21: 67–91Google Scholar
  61. 61.
    Steele D. F., Butler C. A. and Fox T. D. (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc. Natl. Acad. Sci. USA93: 5253–5257CrossRefPubMedGoogle Scholar
  62. 62.
    Fox T. D. and Shen Z. (1993) Positive control of translation in organellar genetic systems. In: Protein Synthesis and Targeting in Yeast, pp. 157–166, McCarthy J. E. G. and Tuite M. F. (eds), Springer-Verlag, BerlinGoogle Scholar
  63. 63.
    Chalfie M., Tu Y., Euskirchen G., Ward W. W. and Prasher D. C. (1994) Green fluorescent protein as a marker for gene expression. Science263: 802–805PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • T. D. Fox
    • 1
  1. 1.Section of Genetics and DevelopmentCornell UniversityIthacaUSA

Personalised recommendations