Skip to main content
Log in

Bacterial protein toxins and cell vesicle trafficking

  • Milti-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

A group of bacterial protein toxins interfere with vesicular trafficking inside cells. Clostridial neurotoxins affect mainly the highly regulated fusion of neurotransmitter- and hormone-containing vesicles with the plasma membrane. They cleave the three SNARE proteins: VAMP, SNAP-25 and syntaxin, and this selective proteolysis results in a blockade of exocytosis. TheHelicobacter pylori cytotoxin is implicated in the pathogenesis of gastroduodenal ulcers. It causes a progressive and extensive vacuolation of cells followed by necrosis, after a cytotoxin-induced alteration of membrane trafficking by late endosomes. Vacuoles originate from this compartment in a rab7-dependent process and swell because they are acidic and accumulate membrane-permeant amines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mims C., Dimmock N., Nash A. and Stephen J. (1995) Mims' Pathogenesis of Infectious Disease, Academic Press, London

    Google Scholar 

  2. Alouf J. E. and Freer J. H., eds (1991) Sourcebook of Bacterial Protein Toxins, Academic Press, London

    Google Scholar 

  3. Menestrina G., Schiavo G. and Montecucco C. (1994) Molecular mechanisms of action of bacterial protein toxins. Mol. Aspects Med.15: 79–193

    Article  PubMed  Google Scholar 

  4. Simpson L. L., ed. (1989) Botulinum Neurotoxin and Tetanus Toxin, Academic Press, San Diego

    Google Scholar 

  5. Montecucco C., ed. (1995) Clostridial Neurotoxins. Curr. Top. Microbiol. Immunol., vol. 195, Springer, Heidelberg

    Google Scholar 

  6. Montecucco C. and Schiavo G. (1995) Structure and function of tetanus and botulinum neurotoxins. Quart. Rev. Biophys.28: 423–472

    Google Scholar 

  7. Nishiki T., Kamata Y., Nemoto Y., Omori A., Ito T., Takahashi M. et al. (1994) Identification of protein receptor forClostridium botulinum type B neurotoxin in rat brain synaptosomes. J. Biol. Chem.269: 10498–10503

    PubMed  Google Scholar 

  8. Dolly J. O., Black J., Williams R. S. and Melling J. (1984) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature307: 457–460

    Article  PubMed  Google Scholar 

  9. Critchley D. R., Nelson P. G., Habig W. H. and Fishman P. H. (1985) Fate of tetanus toxin bound to the surface of primary neurons in culture: evidence for rapid internalization.J. Cell Biol. 100: 1499–1507

    Article  PubMed  Google Scholar 

  10. Parton R. G., Ockleford C. D. and Critchley D. R. (1987) A study of the mechanism of internalisation of tetanus toxin by primary mouse spinal cord cultures. J. Neurochem.49: 1057–1068

    PubMed  Google Scholar 

  11. Wellhoner H. H. (1992) Tetanus and botulinum neurotoxins. In: Handbook of Experimental Pharmacology, vol. 102, pp. 357–417, Herken H. and Hucho F. (eds) Springer-Verlag, Berlin

    Google Scholar 

  12. Schwab M. E. and Thoenen H. (1976) Electron micrscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: an autoradiographic and morphometric study. Brain Res.105: 213–227

    Article  PubMed  Google Scholar 

  13. Schwab M. E., Suda K. and Thoenen H. (1979) Selective retrograde trans-synaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J. Cell. Biol.82: 798–810.

    Article  PubMed  Google Scholar 

  14. Williamson, L. C. and Neale E. A. (1994) Bafilomycin A1 inhibits the action of tetanus toxin in spinal cord neurons in cell culture. J. Neurochem.63: 2342–2345

    PubMed  Google Scholar 

  15. Simpson, L. L., Coffield J. A. and Bakry N. (1994) Inibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J. Pharmacol. Exp. Ther.269: 155–166

    Google Scholar 

  16. Boquet, P. and Duflot E. (1982) Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proc. Natl. Acad. Sci. USA,79: 7614–7618

    PubMed  Google Scholar 

  17. Boquet P., Duflot E. and Hattecoeur B. (1984) Low pH induces a hydrophobic domain in the tetanus toxin molecule. Eur. J. Biochem.144: 339–344

    Article  PubMed  Google Scholar 

  18. Roa M. and Boquet P. (1985) Interaction of tetanus toxin with lipid vesicles at low pH. J. Biol. Chem.260: 6827–6835

    PubMed  Google Scholar 

  19. Hoch D. H., Romero-Mira M., Ehrlich B. E., Finkelstein A., DasGupta B. R. and Simpson L. L. (1985) Channels formed by botulinum, tetanus and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc. Natl. Acad. Sci. USA82: 1692–1696

    PubMed  Google Scholar 

  20. Montecucco C., Schiavo G., Brunner, J., Duflot E., Boquet P. and Roa M. (1986) Tetanus toxin is labeled with photoactivatable phospholipids at low pH. Biochemistry25:919–924

    Article  PubMed  Google Scholar 

  21. Gambale F. and Montal M. (1988) Characterization of the channel properties of tetanus toxin in planar lipid bilayers. Biophys. J.53: 771–783

    PubMed  Google Scholar 

  22. Montecucco C., Schiavo G. and DasGupta B. R. (1989) Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes. Biochem. J.259: 47–53

    PubMed  Google Scholar 

  23. Menestrina G. Forti S. and Gambale F. (1989) Interaction of tetanus toxin with lipid vesicles: effects of pH, surface charge and transmembrane potential on the kinetics of channel formation. Biophys. J.55: 393–405

    PubMed  Google Scholar 

  24. Blaustein R. O., Germann W. J., Finkelstein A. and DasGupta B. R. (1989) The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEBS Lett.226: 115–120

    Article  Google Scholar 

  25. Montal M. S., Blewitt R., Tomich J. M. and Montal M. (1992) Identification of an ion channel-forming motif in the primary structure of tetanus and botulinum neurotoxins. FEBS Lett.313: 12–18

    Article  PubMed  Google Scholar 

  26. Schmid M. F., Robinson J. P. and DasGupta B. R. (1993) Direct visualization of botulinum neurotoxin-induced channels in phospholipid vesicles. Nature364: 827–830.

    Article  PubMed  Google Scholar 

  27. Beise J., Hahnen J., Andersen-Beckh B. and Dreyer F. (1994) Pore formation by tetanus toxin, its chain and fragments in neuronal membranes and evaluation of the underlying motifs in the structure of the toxin molecule. Naunyn-Schmiedeberg's Arch. Pharmacol.349: 66–73

    Google Scholar 

  28. Martoglio B., Hofmann M. W., Brunner J. and Dobberstein B. (1995) The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell81: 207–214

    Article  PubMed  Google Scholar 

  29. Martoglio B. and Dobberstein B. (1996) Snapshots of membrane translocating proteins. Trends Cell Biol.6: 142–147

    Article  PubMed  Google Scholar 

  30. Driessen A. J. M. (1996) Prokaryotic protein translocation. In: Phoenix D. A. (ed.), Protein Targeting, chap. 5, Portland Press, London

    Google Scholar 

  31. Sollner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S. et al. (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature362: 318–324

    Article  PubMed  Google Scholar 

  32. Ferro-Novick S. and Jahn R. (1994) Vesicle fusion from yeast to man. Nature370: 191–193

    Article  PubMed  Google Scholar 

  33. Sudhof T. C. (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature375: 645–653

    Article  PubMed  Google Scholar 

  34. Rothman J. E. and Wieland F. T. (1996) Protein sorting by transport vesicles. Science222: 227–234

    Google Scholar 

  35. Schiavo G., Poulain B., Rossetto O., Benfenati F., Tauc L. and Montecucco C. (1992) Tetanus toxin is a zinc protein and its inhibition of neurotrasmitter release and protease activity depend on zinc. EMBO J.11: 3577–3583

    PubMed  Google Scholar 

  36. Schiavo G., Benfenati F., Poulain B., Rossetto O., Polverino de Laureto P., DasGupta B. R. et al. (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by a proteolytic cleavage of synaptobrevin. Nature359: 832–835

    PubMed  Google Scholar 

  37. Schiavo G., Shone C. C., Rossetto O., Alexandre F. C. G. and Montecucco C. (1993) Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J. Biol. Chem.268: 11516–11519

    PubMed  Google Scholar 

  38. Schiavo G., Malizio C., Trimble W. S., Polverino de Laureto P., Milan G., Sugiyama H. et al. (1994) Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala/Ala peptide bond. J. Biol. Chem.269: 20213–20216

    PubMed  Google Scholar 

  39. Yamasaki S., Hu, Y., Binz T., Kalkuhl A., Kurazono H., Tamura T. et al. (1994) Synaptobrevin/VAMP ofAplysia californica: structure and proteolysis by tetanus and botulinal neurotoxins type D and F. Proc. Natl. Acad. Sci. USA91: 4688–4692

    PubMed  Google Scholar 

  40. Yamasaki S., Baumeister A., Binz T., Blasi J., Link E. Cornille F. et al. (1994) Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J. Biol. Chem.269: 12764–12772

    PubMed  Google Scholar 

  41. Rossetto O., Gorza L., Schiavo G., Schiavo N., Scheller R. H. and Montecucco C. (1995) VAMP/Synaptobrevin isoforms 1 and 2 are widely and differentially expressed in nonneuronal tissues. J. Cell Biol.132: 167–179

    Article  Google Scholar 

  42. Mellanby J., Beaumont M. A. and Thompson P. A. (1988) The effect of lantanum on nerve terminals in goldfish muscle after paralysis with tetanus toxin. Neuroscience25: 1095–1106

    Article  PubMed  Google Scholar 

  43. Neale E. A., Habig W. H., Schrier B. K., Bergey G. K., Bowers L. M. and Koh J. (1989) Application of tetanus toxin for structure-function studies in neuronal cell cultures. In: Eighth International Conference on Tetanus, pp. 66–70, Nisticò G., Bizzini B., Bytchenko B. and Triau R. (eds), Pythagora Press, Rome

    Google Scholar 

  44. Hunt J. M., Bommert K., Charlton M. P., Kistner A., Habermann E., Augustine G. J. et al. (1994) A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron12: 1269–1279

    Article  PubMed  Google Scholar 

  45. Blasi J., Chapman E. R., Yamasaki S., Binz T., Niemann H. and Jahn R. (1993) Botulinum neurotoxin C blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J.12: 4821–4828

    PubMed  Google Scholar 

  46. Schiavo G., Shone C. C., Bennett M. K., Scheller R. H. and Montecucco C. (1995) Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J. Biol. Chem.270: 10566–10570

    Article  PubMed  Google Scholar 

  47. Blasi J., Chapman E. R., Link E., Binz T., Yamasaki S., DeCamilli P., Südhof T. C. et al. (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature365: 160–163

    PubMed  Google Scholar 

  48. Binz T., Blasi J., Yamasaki S., Baumeister A., Link E., Südhof T. C. et al. (1994) Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J. Biol. Chem.269: 1617–1620

    PubMed  Google Scholar 

  49. Schiavo G., Rossetto O., Catsicas S., Polyverino de Laureto P., DasGupta B. R., Benfenati F. et al. (1993) Identification of the nerve-terminal targets of botulinum neurotoxins serotypes A, D and E. J. Biol. Chem.268: 23784–23787

    PubMed  Google Scholar 

  50. Schiavo G., Santucci A., DasGupta B. R., Metha P. P., Jontes J., Benfenati F. et al. (1993) Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett.335: 99–103

    Article  PubMed  Google Scholar 

  51. Osen-Sand A., Staple J. K., Naldi E., Schiavo G., Rossetto O., Petitpierre S. et al. (1996) Common and distinct fusionproteins in axonal growth and transmitter release. J. Comp. Neurol.367: 222–234

    Article  PubMed  Google Scholar 

  52. Foran P., Lawrence G. W., Shone C. C., Foster K. A. and Dolly J. O. (1996) Botulinum neurotoxin C1 cleaves both syntaxin and SNAP25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry35: 2630–2636

    Article  PubMed  Google Scholar 

  53. Williamson L. C., Halpern J. L., Montecucco C., Brown J. E. and Neale E. A. (1996) Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on SNAP-25. J. Biol. Chem.271: 7694–7699

    Article  PubMed  Google Scholar 

  54. Gansel M., Penner R. and Dreyer F. (1987) Distinct sites of action of clostridial neurotoxins revealed by double poisoning of mouse motor-nerve terminals. Pflugers Arch.409: 533–539

    Article  PubMed  Google Scholar 

  55. Minton N. (1995) Molecular genetics of clostridial neurotoxins. Curr. Top. Microbiol. Immunol.195: 161–194

    PubMed  Google Scholar 

  56. Lebeda F. J. and Olson M. A. (1994) Secondary structural predictions for the clostridial neurotoxins. Proteins: Structure, Function & Genetics20: 293–300

    Google Scholar 

  57. Rossetto O., Schiavo G., Montecucco C., Poulain B., Deloye F., Lozzi L. et al. (1994) SNARE motif and neurotoxin recognition. Nature372: 415–416

    PubMed  Google Scholar 

  58. Montecucco C. and Schiavo G. (1993) Tetanus and botulism neurotoxins: a new group of zinc proteases. Trends Biochem. Sci.18: 324–327

    Article  PubMed  Google Scholar 

  59. Witcome M., Rossetto O., Montecucco C. and Shone C. C. (1996) Substrate residues distal to the cleavage site of botulinum type B neurotoxin play a role in determining the specificity of its endopeptidase activity. FEBS Lett.386: 133–136

    Article  PubMed  Google Scholar 

  60. Pellizzari R., Rossetto, O., Lozzi, L., Giovedi S., Johnson E., Shone C. C. et al., (1996) Structural determinants of the specificity for VAMP/synaptobrevin of tetanus and botulinum type B and G neurotoxins. J. Biol. Chem.271: 20353–20358

    Article  PubMed  Google Scholar 

  61. Shone C. C., Quinn, C. P., Wait R., Hallis B., Fooks S. G. and Hambleton, P. (1993) Proteolytic cleavage of synthetic fragments of vescile-associated membrane protein isoform-2 by botulinum type B neurotoxin. Eur. J. Biochem.217: 965–971

    PubMed  Google Scholar 

  62. Grote E., Hao J. C., Bennett M. K. and Kelly R. B. (1995) A targeting signal in VAMP regulating transport to synaptic vesicle. Cell81: 581–589

    Article  PubMed  Google Scholar 

  63. Desnos, C., Clift-O'Grady L. and Kelly, R. B. (1995) Biogenesis of synaptic vesicles in vitro. J. Cell. Biol.130: 1041–1049

    Article  PubMed  Google Scholar 

  64. Marshall B. J. and Warren J. R. (1984) Unidentified curved bacilli in the stomach of patients with gastric and peptic ulceration. Lanceti: 1311–1315

  65. Marshall B. J., Armstrong J. A., McGechie D. B. and Glancy R. J. (1985) Attempt to fulfil Koch's postulates for pyloric campylobacter Med. J. Austr.142: 436–439

    Google Scholar 

  66. Eurogast Study Group (1993) An international association betweenHelicobacter pylori infection and gastric cancer. Lancet341: 1359–1362

    Google Scholar 

  67. Parsonnet J., Hansen S., Rodriguez L., Gelb A., Warnke A., Jellum E. et al. (1994)Helicobacter pylori infection and gastric lymphoma. New Engl. J. Med.330: 1267–1271

    Article  PubMed  Google Scholar 

  68. Cover T. L. and Blaser, M. J. (1993)Helicobacter pylori and gastroduodenal disease. Annu. Rev. Med.43: 135–145

    Article  Google Scholar 

  69. Telford, J. L., Covacci A., Ghiara P., Montecucco C. and Rappuoli R. (1994) Unravelling the pathogenic role ofHelicobacter pylori in peptic ulcer: potential new therapies and vaccines. Trends Biotechnol.12: 420–426

    Article  PubMed  Google Scholar 

  70. Blaser M. J. (1996) The bacteria behind ulcers. Sci. Am.274: 104–107

    PubMed  Google Scholar 

  71. Leunk R. D., Johnson P. T., David B. C., Kraft W. G. and Morgan D. R. (1988) Cytotoxic activity in broth-culture filtrates ofCampylobacter pylori. J. Med. Microbiol.26: 93–99

    PubMed  Google Scholar 

  72. Cover T. L. and Blaser M. J. (1992) Purification and characterization of the vacuolating toxin fromHelicobacter pylori. J. Biol. Chem.287: 10570–10575

    Google Scholar 

  73. Telford, J. L., Ghiara P., Dell'Orco, M., Comanducci M., Burroni D., Bugnoli M. et al. (1994) Gene structure of theHelicobacter pylori cytotoxin and evidence of its key role in gastric disease. J. Exp. Med.179: 1653–1658

    Article  PubMed  Google Scholar 

  74. Schmitt W., and Haas R. (1994) Genetic analysis of theHelicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol. Microbiol.12: 307–319

    PubMed  Google Scholar 

  75. Phadnis S. H., Ilver D., Janzon L., Normark S. and Westblom T. U. (1994) Pathological significance and molecular characterization of the vacuolating toxin gene ofHelicobacter pylori. Infect. Immun.62: 1557–1565

    PubMed  Google Scholar 

  76. Cover T. L., Tummuru M. K. R., Cao P., Thompson S. A. and Blaser M. J. (1994) Divergence of genetic sequences for the vacuolating cytotoxin amongHelicobacter pylori strains J. Biol. Chem.269: 10566–10573

    PubMed  Google Scholar 

  77. Marchetti M., Aricò B., Burroni D., Figura N., Rappuoli R. and Ghiara P. (1995)Helicobacter pylori infection in a mouse model that mimics human disease. Science267: 1655–1658

    PubMed  Google Scholar 

  78. Tompkins L. S. and Falkow S. (1995) The new path to preventing ulcers. Science267: 1621–1622

    PubMed  Google Scholar 

  79. Moll G., Papini E., Colonna R., Burroni D., Telford J., Rappuoli R. et al. (1996) Lipid interaction of the 37 kDa and 58 kDa fragments of theHelicobacter pylori cytotoxin. Eur. J. Biochem.234: 947–952.

    Article  Google Scholar 

  80. Lupetti P., Heuser J. E., Manetti R., Massari P., Lanzavecchia S., Bellon P. L. et al. (1996) Oligomeric and subunit structure of theHelicobacter pylori vacuolating cytotoxin. J. Cell Biol.133: 801–807

    Article  PubMed  Google Scholar 

  81. de Bernard M., Papini E., De Filippis E., Gottardi E., Telford J., Manetti M. et al. (1995) Low pH activates the vacuolating toxin ofHelicobacter pylori which becomes acid and pepsin resistant. J. Biol. Chem.270: 23937–23940

    Article  PubMed  Google Scholar 

  82. Figura N., Guglielmetti P., Rossolini A., Barberi A., Cusi G., Musmanno R. A., et al. (1989) Cytotoxin production byCampylobacter pylori strains isolated from patients with peptic ulcers and from patients with chronic gastritis only. J. Clin. Microbiol.27: 225–226

    PubMed  Google Scholar 

  83. Cover T. L., Puryear W., Perez-Perez G. I. and Blaser M. J. (1991) Effect of urease of HeLa cell vacuolation induced byHelicobacter pylori vacuolating cytotoxin. Infect. Immun.59: 1264–1270

    PubMed  Google Scholar 

  84. Papini E., Bugnoli M., de Bernard M., Figura N., Rappuoli R. and Montecucco C. (1993) Bafilomycin A1 inhibitsHelicobacter pylori induced vacuolization of HeLa cells. Mol. Microbiol.7: 323–327

    PubMed  Google Scholar 

  85. Papini E., Gottardi E., Satin B., de Bernard M., Telford J., Massari P. et al. (1996) The vacuolar ATPase proton pump is present on intracellular vacuoles induced byHelicobacter pylori. J. Med. Microbiol.44: 1–6

    PubMed  Google Scholar 

  86. Papini E., De Bernard M., Milia E., Bugnoli M., Zerial M., Rappuoli R. et al. (1994) Cellular vacuoles induced byHelicobacter pylori originate from late endosomal compartments. Proc. Natl. Acad. Sci. USA91: 9720–9724

    PubMed  Google Scholar 

  87. Chavrier P., Parton R. G., Hauri H. P., Simons K. and Zerial M. (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell62: 317–329

    Article  PubMed  Google Scholar 

  88. Nuoffer C. and Balch W. E. (1994) GTPases: multifunctional molecular switches regulating vesicular traffic. Annu. Rev. Biochem.63: 949–990

    Article  PubMed  Google Scholar 

  89. Pfeffer S. R., Dirac-Svejstrup B. and Soldati T. (1995) Rab GDP dissociation inhibitor: putting Rab GTPases in the right place. J. Biol. Chem.270: 17057–17059

    Article  PubMed  Google Scholar 

  90. Simons K. and Zerial M. (1993) Rab proteins and the road maps for intracellular transport. Neuron11: 789–799

    Article  PubMed  Google Scholar 

  91. Zerial M. and Huber L. (1996) Guidebook to the Small GTPases, Oxford University Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montecucco, C., Papini, E. & Schiavo, G. Bacterial protein toxins and cell vesicle trafficking. Experientia 52, 1026–1032 (1996). https://doi.org/10.1007/BF01952098

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952098

Key words

Navigation