Skip to main content
Log in

Molecular machinery mediating vesicle budding, docking and fusion

  • Milti-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

A general machinery buds and fuses transport vesicles which connect intracellular compartments with each other and allow communication with the extracellular environment. Cytoplasmic coat proteins deform membranes to bud vesicles and interact directly or indirectly with cargo molecules. Compartment-specific SNAREs (SNAP receptors) on vesicles and target membranes dock vesicles and provide a scaffolding for the general fusion machinery to initiate lipid bilayer fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NSF:

N-ethylmaleimide-sensitive fusion protein

SNAP:

soluble NSF attachment protein

SNARE:

SNAP receptor

ER:

endoplasmic reticulum

ARF:

ADP-ribosylation factor

NEM:

N-ethylmaleimide

GAP:

GTPase activating protein

References

  1. Palade G. (1975) Intracellular aspects of the process of protein synthesis. Science189: 347–358

    PubMed  Google Scholar 

  2. Serafini T., Stenbeck G., Brecht A., Lottspeich F., Orci L., Rothman J. E. et al. (1991) A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrincoated vesicle coat protein beta-adaptin. Nature349: 215–220

    Article  PubMed  Google Scholar 

  3. Waters M. G., Serafini T. and Rothman J. E. (1991) ‘Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature349: 248–251

    Article  PubMed  Google Scholar 

  4. Serafini T., Orci L., Amherdt M., Brunner M., Kahn R. A. and Rothman J. E. (1991) ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell67: 239–253

    Article  PubMed  Google Scholar 

  5. Brown H. A., Gutowski S., Moomaw C. R., Slaughter C. and Sternweis P. C. (1993) ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity [see comments]. Cell75: 1137–1144

    Article  PubMed  Google Scholar 

  6. Cockcroft S., Thomas G. M., Fensome A., Geny B., Cunningham E., Gout I. et al. (1994) Phospholipase D: a downstream effector of ARF in granulocytes. Science263: 523–526

    PubMed  Google Scholar 

  7. De Camilli P., Emr S. D., McPherson P. S. and Novick P. (1996) Phosphoinositides as regulators in membrane traffic. Science271: 1533–1539

    PubMed  Google Scholar 

  8. Ostermann J., Orci L., Tani K., Amherdt M., Ravazzola M., Elazar Z. et al. (1993) Stepwise assembly of functionally active transport vesicles. Cell75: 1015–1025.

    Article  PubMed  Google Scholar 

  9. Tanigawa G., Orci L., Amherdt M., Ravazzola M., Helms J. B. and Rothman J. E. (1993) Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J. Cell. Biol.123: 1365–1371

    Article  PubMed  Google Scholar 

  10. Cukierman E., Huber I., Rotman M. and Cassel D. (1995) The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science270: 1999–2002

    PubMed  Google Scholar 

  11. Makler V., Cukierman E., Rotman M., Admon A. and Cassel D. (1995) ADP-ribosylation factor-directed GTPase-activating protein: purification and partial characterization. J. Biol. Chem.270: 5232–5237

    Article  PubMed  Google Scholar 

  12. Wieland F. T., Gleason M. L., Serafini T. A. and Rothman J. E. (1987) The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell50: 289–300

    Article  PubMed  Google Scholar 

  13. Pearse B. M. (1988) Receptors compete for adaptors found in plasma membrane coated pits. Embo J.7: 3331–3336

    PubMed  Google Scholar 

  14. Jackson M. R., Nilsson T. and Peterson P. A. (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. Embo J.9:3153–3162

    PubMed  Google Scholar 

  15. Nilsson T., Jackson M. and Peterson P. A. (1989) Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell58: 707–718

    Article  PubMed  Google Scholar 

  16. Schutze M. P., Peterson P. A. and Jackson M. R. (1994) An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. Embo J.13: 1696–1705

    PubMed  Google Scholar 

  17. Cosson P. and Letourneur F. (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science263: 1629–1631

    PubMed  Google Scholar 

  18. Letourneur F., Gaynor E. C., Hennecke S., Demolliere C., Duden R., Emr S. D. et al. (1994) Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell79: 1199–1207

    Article  PubMed  Google Scholar 

  19. Rothman J. E. and Wieland F. T. (1996) Protein sorting by transport vesicles. Science272: 227–234

    PubMed  Google Scholar 

  20. Stamnes M. A., Craighead M. W., Hoe M. H., Lampen N., Geromanos S., Tempst P. and Rothman J. E. (1995) An integral membrane component of coatomer-coated transport vesicles defines a family of proteins involved in budding. Proc. Natl. Acad. Sci. USA92: 8011–8015

    PubMed  Google Scholar 

  21. Schimmoller F., Singer-Kruger B., Schroder S., Kruger U., Barlowe C. and Riezman H. (1995) The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. Embo J.14: 1329–1339

    PubMed  Google Scholar 

  22. Vale R. D., Schnapp B. J., Reese T. S. and Sheetz M. P. (1985) Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell40: 449–454

    Article  PubMed  Google Scholar 

  23. Vale R. D., Schnapp B. J., Mitchison T., Steuer E., Reese T. S. and Sheetz M. P. (1985) Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell43: 623–632

    Article  PubMed  Google Scholar 

  24. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P. et al. (1993) SNAP receptors implicated in vesicle targeting and fusion [see comments]. Nature362: 318–324

    Article  PubMed  Google Scholar 

  25. Lewis M. J. and Pelham H. R. (1996) SNARE-mediated retrograde traffic from the Golgi complex to the endoplasmic reticulum. Cell85: 205–215

    Article  PubMed  Google Scholar 

  26. Banfield D. K., Lewis M. J., Rabouille C., Warren G. and Pelham H. R. (1994) Localization of Sed5, a putative vesicle targeting molecule, to the cis-Golgi network involves both its transmembrane and cytoplasmic domains. J. Cell. Biol.127: 357–371

    Article  PubMed  Google Scholar 

  27. Jones E. W. (1977) Proteinase mutants ofSaccharomyces cerevisiae. Genetics85: 23–33

    PubMed  Google Scholar 

  28. Aalto M. K., Ronne H. and Keranen S. (1993) Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. Embo J.12: 4095–4104

    PubMed  Google Scholar 

  29. Hardwick K. G. and Pelham H. R. (1992) SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. J. Cell. Biol.119: 513–521

    Article  PubMed  Google Scholar 

  30. Banfield D. K., Lewis M. J. and Pelham H. R. (1995) A SNARE-like protein required for traffic through the Golgi complex. Nature375: 806–809

    Article  PubMed  Google Scholar 

  31. Sogaard M., Tani K., Ye R. R., Geromanos S., Tempst P., Kirchhausen T. et al. (1994) A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell78: 937–948

    Article  PubMed  Google Scholar 

  32. Protopopov V., Govindan B., Novick P. and Gerst, J. E. (1993) Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway inS. cerevisiae. Cell74: 855–861

    Article  PubMed  Google Scholar 

  33. Couve A. and Gerst J. E. (1994) Yeast Snc proteins complex with Sec9: functional interactions between putative SNARE proteins. J. Biol. Chem.269: 23391–23394

    PubMed  Google Scholar 

  34. Novick P., Field C. and Schekman R. (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell21: 205–215

    Article  PubMed  Google Scholar 

  35. Newman A. P., Shim J. and Ferro-Novick S. (1990) BET1, BOS1 and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex. Mol. Cell. Biol.10: 3405–3414

    PubMed  Google Scholar 

  36. Dascher C., Ossig R., Gallwitz D. and Schmitt H. D. (1991) Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily. Mol. Cell. Biol.11: 872–885

    PubMed  Google Scholar 

  37. Bennett M. K., Garcia-Arraras J. E., Elferink L. A., Peterson K., Fleming A. M., Hazuka C. D. et al. (1993) The syntaxin family of vesicular transport receptors. Cell74: 863–873

    Article  PubMed  Google Scholar 

  38. DeBello W. M., Betz H. and Augustine G. J. (1993) Synaptotagmin and neurotransmitter release [comment]. Cell74: 947–950

    Article  PubMed  Google Scholar 

  39. Elferink L. A., Peterson M. R. and Scheller R. H. (1993) A role for synaptotagmin (p65) in regulated exocytosis. Cell72: 153–159

    Article  PubMed  Google Scholar 

  40. Geppert M., Goda Y., Hammer R. E., Li C., Rosahl T. W., Stevens C. F. et al. (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell79: 717–727

    Article  PubMed  Google Scholar 

  41. Südhof T. C. (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature375: 645–653

    Article  PubMed  Google Scholar 

  42. Schiavo G., Gmachl M. J., Stenbeck G., Söllner, T. H. and Rothman J. E. (1995) A possible docking and fusion particle for synaptic transmission. Nature378: 733–736

    Article  PubMed  Google Scholar 

  43. Baumert M., Maycox P. R., Navone F., De Camilli P. and Jahn R. (1989) Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. Embo J.8: 379–384

    PubMed  Google Scholar 

  44. Trimble W. S., Cowan D. M. and Scheller R. H. (1988) VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc. Natl. Acad. Sci. USA85: 4538–4542

    PubMed  Google Scholar 

  45. Oyler G. A., Higgins G. A., Hart R. A., Battenberg E., Billingsley M., Bloom F. E. et al. (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell. Biol.109: 3039–3052

    Article  PubMed  Google Scholar 

  46. Bennett M. K., Calakos N. and Scheller R. H. (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science257: 255–259

    PubMed  Google Scholar 

  47. Hunt J. M., Bommert K., Charlton M. P., Kistner A., Habermann E., Augustine G. J. et al. (1994) A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron12: 1269–1279

    Article  PubMed  Google Scholar 

  48. Broadie K., Prokop A., Bellen H. J., O'Kane C. J., Schulze K. L. and Sweeney S. T. (1995) Syntaxin and synaptobrevin function downstream of vesicle docking inDrosophila. Neuron15: 663–673

    Article  PubMed  Google Scholar 

  49. Sweeney S. T., Broadie K., Keane J., Niemann H. and O'Kane C. J. (1995) Targeted expression of tetanus toxin light chain inDrosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron14: 341–351

    Article  PubMed  Google Scholar 

  50. Pevsner J., Hsu S. C., Braun J. E., Calakos N., Ting A. E., Bennett M. K. et al. (1994) Specificity and regulation of a synaptic vesicle docking complex. Neuron13: 353–361

    Article  PubMed  Google Scholar 

  51. Harrison S. D., Broadie K., van de Goor J. and Rubin G. M. (1994) Mutations in theDrosophila Rop gene suggest a function in general secretion and synaptic transmission. Neuron13: 555–566

    Article  PubMed  Google Scholar 

  52. Edelmann L., Hanson P. I., Chapman E. R. and Jahn R. (1995) Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. Embo J.14: 224–231

    PubMed  Google Scholar 

  53. Leveque C., Hoshino T., David P., Shoji-Kasai, Y., Leys K., Omori A. et al. (1992) The synaptic vesicle protein synaptotagmin associates with calcium channels and is a putative Lambert-Eaton myasthenic syndrome antigen. Proc. Natl. Acad. Sci. USA89: 3625–3629

    PubMed  Google Scholar 

  54. Yoshida A., Oho C., Omori A., Kuwahara R., Ito, T. and Takahashi M. (1992) HPC-1 is associated with synaptotagmin and omega-conotoxin receptor. J. Biol. Chem.267: 24925–24928

    PubMed  Google Scholar 

  55. Malhotra V., Orci L., Glick B. S., Block M. R. and Rothman J. E. (1988) Role of anN-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell54: 221–227

    Article  PubMed  Google Scholar 

  56. Block M. R., Glick B. S., Wilcox C. A., Wieland F. T., Rothman J. E., Malhotra V. et al. (1988) Purification of anN-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc. Natl. Acad. Sci. USA85: 7852–7856

    PubMed  Google Scholar 

  57. Clary D. O., Griff I. C. and Rothman J. E. (1990) SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell61: 709–721

    Article  PubMed  Google Scholar 

  58. Whiteheart S. W., Griff I. C., Brunner M., Clary D. O., Mayer T., Buhrow S. A. et al. (1993) SNAP family of NSF attachment proteins includes a brain-specific isoform [see comments]. Nature362: 353–355

    Article  PubMed  Google Scholar 

  59. Beckers C. J., Block M. R., Glick B. S., Rothman J. E. and Balch W. E. (1989) Vesicular transport between the endoplasmic reticulum and the Golgi stack requires the NEM-sensitive fusion protein. Nature339: 397–398

    Article  PubMed  Google Scholar 

  60. Diaz R., Mayorga L. S., Weidman P. J., Rothman, J. E. and Stahl P. D. (1989) Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport. Nature339: 398–400

    Article  PubMed  Google Scholar 

  61. Graham T. R. and Emr S. D. (1991) Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant. J. Cell. Biol.114: 207–218

    Article  PubMed  Google Scholar 

  62. Orci L., Malhotra V., Amherdt M., Serafini T. and Rothman J. E. (1989) Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movement in the Golgi stack. Cell56: 357–368

    Article  PubMed  Google Scholar 

  63. Pallanck L., Ordway R. W. and Ganetzky B. (1995) ADrosophila NSF mutant [letter]. Nature376: 25

    Article  PubMed  Google Scholar 

  64. Wilson D. W., Wilcox C. A., Flynn G. C., Chen E., Kuang W. J., Henzel W. J. (1989) A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature339: 355–359

    Article  PubMed  Google Scholar 

  65. Kaiser C. A. and Schekman R. (1990) Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell61: 723–733

    Article  PubMed  Google Scholar 

  66. Weidman P. J., Melancon P., Block M. R. and Rothman J. E. (1989) Binding of anN-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor. J. Cell. Biol.108: 1589–1596

    Article  PubMed  Google Scholar 

  67. Söllner T., Bennett M. K., Whiteheart S. W., Scheller R. H. and Rothman J. E. (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation and fusion. Cell75: 409–418

    PubMed  Google Scholar 

  68. Hayashi T., McMahon H., Yamasaki S., Binz T., Hata Y., Sudhof T. C. et al. (1994) Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. Embo J.13: 5051–5061

    PubMed  Google Scholar 

  69. Chapman E. R., An S., Barton N. and Jahn R. (1994) SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J. Biol. Chem.269: 27427–27432

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Söllner, T.H., Rothman, J.E. Molecular machinery mediating vesicle budding, docking and fusion. Experientia 52, 1021–1025 (1996). https://doi.org/10.1007/BF01952097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952097

Key words

Navigation