Experientia

, Volume 41, Issue 10, pp 1255–1264 | Cite as

Patterns in plant parthenogenesis

  • P. Bierzychudek
Article

Summary

Plant taxa that reproduce asexually display some distinct geographical and ecological patterns. A literature review reveals that such taxa 1) tend to have larger ranges, 2) tend to range into higher latitudes, and 3) tend to range to higher elevations than do their sexual relatives. Asexual taxa have a greater tendency than sexual taxa do to colonize once-glaciated areas. These trends have previously been identified as characteristic of parthenogenetic animals as well. While many authors have interpreted these trends as providing support for the ‘biotic uncertainty’ hypothesis for the maintenance of sex, these trends are consistent with several other interpretations as well. Furthermore, all of these interpretations have ignored the positive correlation that exists between ploidy level and breeding system: asexual plant and animal taxa are generally polyploid, while their sexual relatives are generally diploid. Evidence is presented for plants, and by extension for animals as well, that high ploidy levels alone could (independent of breeding system) endow individuals with the ability to tolerate these ‘extreme’ environments. For this reason, it appears premature to interpret observed distribution patterns as evidence to support hypotheses about what forces maintain sexual reproduction. Only experimental tests, using sexuals and asexuals of comparable ploidy levels, can permit us to discriminate among the alternatives.

Key words

Apomixis parthenogenesis polyploidy asexual reproduction evolution of sex plant breeding systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babcock, E.B., and Stebbins, G.L., The American species ofCrepis. Their interrelationships and distribution as affected by polyploidy and apomixis. Carnegie Inst. Washington Publ. No. 504, 1938.Google Scholar
  2. 2.
    Baker, H.G., Reproductive methods as factors in speciation in flowering plants. Cold Spring Harb. Symp. quant. Biol.24 (1959) 177–191.Google Scholar
  3. 3.
    Baker, H.G., The evolution of weeds. A. Rev. Ecol. Syst.5 (1974) 1–24.Google Scholar
  4. 4.
    Barker, W.W., Apomixis in the genusArnica (Compositae). Ph. D. thesis, U. of Washington, Seattle 1966.Google Scholar
  5. 5.
    Bayer, R.J., and Stebbins, G.L., Distribution of sexual and apomictic populations ofAntennaria parlinii. Evolution37 (1983) 555–561.Google Scholar
  6. 6.
    Beaman, J.H., The systematics and evolution ofTownsendia (Compositae). Contrib. Gray Herbarium (Harvard) No. 183, 1957.Google Scholar
  7. 7.
    Bell, G., The masterpiece of nature: the evolution and genetics of sexuality, U. of California Press, Berkeley 1982.Google Scholar
  8. 8.
    Catling, P.M., Breeding systems of Northeastern North AmericanSpiranthes (Orchidaceae). Can. J. Bot.60 (1982) 3017–3039.Google Scholar
  9. 9.
    Celarier, R.P., Mehra, K.L., and Wulf, M.L., Cytogeography of theDichanthium annulatum complex. Brittonia10 (1958) 59–72.Google Scholar
  10. 10.
    Clausen, J., Partial apomixis as an equilibrium system in evolution. Caryologia6 suppl. (1954) 469–479.Google Scholar
  11. 11.
    Clausen, J., and Hiesey, W.M., Experimental studies on the nature of species. IV. Genetic structure of ecological races. Carnegie Institute of Washington Publication 615, 1958.Google Scholar
  12. 12.
    Crowe, D.R., and Parker, W.H., Hybridization and agamospermy ofBidens in northwestern Ontario. Taxon30 (1981) 749–760.Google Scholar
  13. 13.
    deWet, J.M.J., Origins of polyploids, in: Polyploidy: biological relevance, pp. 3–15. Ed. W.H. Lewis. Plenum Press, New York 1980.Google Scholar
  14. 14.
    deWet, J.M.J., and Harlan, J.R., Apomixis, polyploidy, and speciation inDichanthium. Evolution24 (1970) 270–277.Google Scholar
  15. 15.
    Ehrendorfer, F., Polyploidy and distribution, in: Polyploidy: biological relevance, pp. 45–60. Ed. W.H. Lewis. Plenum Press, New York 1980.Google Scholar
  16. 16.
    Fahraeus, G.,Sorbus teodori and its distribution in Gotland, Sweden. Svensk Bot. Tidskr.74 (1980) 377–382.Google Scholar
  17. 17.
    Flint, R.F., Glacial and pleistocene geology. John Wiley & Sons, Inc., New York 1957.Google Scholar
  18. 18.
    Ford, H., Competitive relationships among apomictic dandelions (Taraxacum). Biol. J. Linn. Soc.15 (1981) 355–368.Google Scholar
  19. 19.
    Glesener, R.R., and Tilman, D., Sexuality and the components of environmental uncertainty: clues from geographic parthenogenesis in terrestrial animals. Am. Nat.112 (1978) 659–673.Google Scholar
  20. 20.
    Gould, F.W., Notes on apomixis in sideoats grama. J. Range Mgmt.12 (1959) 25–28.Google Scholar
  21. 21.
    Greene, C.W., The systematics ofCalamagrostis (Gramineae) in eastern North America. Ph. D. dissertation, Harvard University, Cambridge 1980.Google Scholar
  22. 22.
    Greene, C.W., Sexual and apomictic reproduction inCalamagrostis (Gramineae) from eastern North America. Am. J. Bot.71 (1984) 285–293.Google Scholar
  23. 23.
    Guppy, G.A., Species relationships ofHieracium (Asteraceae) in British Columbia. Can. J. Bot.56 (1978) 3008–3019.Google Scholar
  24. 24.
    Gustafsson, A., Apomixis in higher plants. I. The mechanism of apomixis. Acta univ. lund.42 (1946) 1–66.Google Scholar
  25. 25.
    Gustafsson, A., Apomixis in higher plants. II. The causal aspect of apomixis. Acta univ. lund.43 (1946) 71–178.Google Scholar
  26. 26.
    Gustafsson, A., Apomixis in higher plants. III. Biotype and species formation. Acta univ. lund.43 (1947) 183–370.Google Scholar
  27. 27.
    Hancock, J.F. Jr, and Wilson, R.E., Biotype selection inErigeron annuus during old field succession. Bull. Torrey bot. Club103 (1976) 122–125.Google Scholar
  28. 28.
    Haskell, G., The history, taxonomy, and breeding system of apomictic British Rubi, in: Reproductive biology and taxonomy of vascular plants, pp. 141–151. Ed. J.G. Hawkes. Pergamon Press, Oxford 1966.Google Scholar
  29. 29.
    Hiesey, W.M., Growth and development of species and hybrids ofPoa under controlled temperatures. Am. J. Bot.40 (1953) 205–221.Google Scholar
  30. 30.
    Hiesey, W.M., and Nobs, M.A., Genetic and transplant studies on contrasting species and ecological races of theAchillea millefolium complex. Bot. Gaz.131 (1970) 245–259.Google Scholar
  31. 31.
    Hiesey, W.M., and Nobs, M.A., Experimental studies on the nature of species. VI. Interspecific hybrid derivatives between facultatively apomictic species of bluegrass and their responses to contrasting environments. Carnegie Inst. of Washington Publication 636, 1982.Google Scholar
  32. 32.
    Hull, V.J., and Groves, R.H., Variation inChrondrilla juncea L. in south-eastern Australia. Aust. J. Bot.21 (1973) 113–135.Google Scholar
  33. 33.
    Jinks, J.L., Perkins, J.M., and Pooni, H.S., The incidence of epistasis in normal and extreme environments. Heredity31 (1973) 263–270.Google Scholar
  34. 34.
    Johnson, A.W., and Packer, J.G., Polyploidy and environment in arctic Alaska. Science148 (1965) 237–239.Google Scholar
  35. 35.
    Khokhlov, S.S., Evolutionary-genetic problems of apomixis in angiosperms, in: Apomixis and plant breeding, pp. 3–17. Ed. S.S. Khokhlov. Nauka Publishers, Moscow 1976.Google Scholar
  36. 36.
    Lewis, W.H., Polyploidy in species populations, in: Polyploidy: biological relevance, pp. 103–144. Ed. W.H. Lewis. Plenum Press, New York 1980.Google Scholar
  37. 37.
    Levin, D.A., Pest pressure and recombination systems in plants. Am. Nat.109 (1975) 437–451.Google Scholar
  38. 38.
    Levin, D.A., Polyploidy and novelty in flowering plants. Am. Nat.122 (1983) 1–25.Google Scholar
  39. 39.
    Van Loenhoud, P.J., and Duyts, H., A comparative study of the germination ecology of some microspecies ofTaraxacum Wigg. Acta bot. neerl.30 (1981) 161–182.Google Scholar
  40. 40.
    Lokki, J., and Saura, A., Polyploidy in insect evolution, in: Polyploidy: biological relevance, pp. 277–312. Ed. W.H. Lewis. Plenum Press, New York 1980.Google Scholar
  41. 41.
    Lyman, J.C., and Ellstrand, N.C., Clonal diversity inTaraxacum officinale (Compositae), an apomict. Heredity53 (1984) 1–10.Google Scholar
  42. 42.
    Lynch, M., Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Q. Rev. Biol.59 (1984) 257–290.Google Scholar
  43. 43.
    Manton, I., The problem ofBiscutella laevigata L. Z. indukt. Abstamm.-u. VererbLehre67 (1934) 41–57.Google Scholar
  44. 44.
    Maynard Smith, J., The evolution of sex. Cambridge University Press, Cambridge 1978.Google Scholar
  45. 45.
    Muntzing, A., Apomixis and sexuality in new material ofPoa alpina from middle Sweden. Hereditas54 (1966) 314–337.Google Scholar
  46. 46.
    Nijs, J.C.M. den, and Sterk, A.A., Cytogeographical studies ofTaraxacum (section Taraxacum) in Central Europe. Bot. Jb.101 (1980) 527–554.Google Scholar
  47. 47.
    Nijs, J.C.M. den, Sterk, A.A., and Van der Hammen, H., Cytological and ecological notes on theTaraxacum sections Erythrosperma and Obliqua of the coastal area of the Netherlands. Acta bot. neerl.27 (1978) 287–305.Google Scholar
  48. 48.
    Nygren, A., Apomixis in the angiosperms. II. Bot. Rev.20 (1954) 577–643.Google Scholar
  49. 49.
    Porsild, A.E., The genusAntennaria in eastern Arctic and subarctic America. Bot. Tidskr.61 (1965) 22–55.Google Scholar
  50. 50.
    Price, R.A.,Draba streptobrachia (Brassicaceae), a new species from Colorado. Brittonia32 (1980) 160–169.Google Scholar
  51. 51.
    Richards, A.J., The origin ofTaraxacum agamospecies. Bot. J. Linn. Soc.66 (1973) 189–211.Google Scholar
  52. 52.
    Rollins, R.C., Sources of genetic variation inParthenium argentatum Gray (Compositae). Evolution3 (1949) 358–368.Google Scholar
  53. 53.
    Roose, M.L., and Gottlieb, L.D., Genetic and biochemical consequences of polyploidy inTragopogon. Evolution30 (1976) 818–830.Google Scholar
  54. 54.
    Sax, H.J., Polyploidy and apomixis inCotoneaster. J. Arnold Arbor.35 (1954) 334–365.Google Scholar
  55. 55.
    Schultz, R.J., Role of polyploidy in the evolution of fishes, in: Polyploidy: biological relevance, pp. 313–340. Ed. W.H. Lewis. Plenum Press, New York 1980.Google Scholar
  56. 56.
    Smith, H.E.,Sedum pulchellum: a physiological and morphological comparison of diploid, tetraploid, and hexaploid races. Bull. Torrey bot. Club73 (1946) 495–541.Google Scholar
  57. 57.
    Solbrig, O.T., and Simpson, B.B., Components of regulation of a population of dandelions in Michigan. J. Ecol.62 (1974) 473–486.Google Scholar
  58. 58.
    Soreng, R.J., Dioecy and apomixis in thePoa fendleriana complex (Poaceae). Abstract, Am. J. Bot.71 (1984) 189.Google Scholar
  59. 59.
    Sorensen, T., and Gudjonsson, G., Spontaneous chromsome-aberrants in apomicticTaraxaca. K. danske Vidensk. Selsk. biol. Skr.4 (1946) 1–48.Google Scholar
  60. 60.
    Stebbins, G.L., Variation and evolution in plants. Columbia U. Press, New York 1950.Google Scholar
  61. 61.
    Stebbins, G.L., Longevity, habitat, and release of genetic variability in the higher plants. Cold Spring Harb. Symp. quant. Biol.23 (1958) 365–378.Google Scholar
  62. 62.
    Stebbins, G.L., Chromosomal evolution in higher plants. Addison-Wesley Pub. Co. 1971.Google Scholar
  63. 63.
    Stebbins, G.L., Polyploidy in plants: unsolved problems and prospects, in: Polyploidy: biological relevance, pp. 495–520. Ed. W.H. Lewis. Plenum Press, New York 1980.Google Scholar
  64. 64.
    Sterk, A.A., den Nijs, J.C.M., and Kreune, W., Sexual and agamospermousTaraxacum spp. in the Netherlands. Acta bot. neerl.31 (1982) 227–238.Google Scholar
  65. 65.
    Sullivan, V.I., Diploidy, polyploidy, and agamospermy among species ofEupatorium (Compositae). Can. J. Bot.54 (1976) 2907–2917.Google Scholar
  66. 66.
    Tal, M., Physiology of polyploids, in: Polyploidy: biological relevance, pp. 61–75. Ed. W.H. Lewis. Plenum Press, New York 1980.Google Scholar
  67. 67.
    Templeton, A.R., The prophecies of parthenogenesis, in: Evolution and genetics of life histories, pp. 75–101. Eds H. Dingle and J.P. Hegmann. Springer-Verlag, New York 1982.Google Scholar
  68. 68.
    Tomkins, D.J., and Grant, W.F., Morphological and genetic factors influencing the response of weed species to herbicides. Can. J. Bot.56 (1978) 1466–1471.Google Scholar
  69. 69.
    Turesson, G., Variation in the apomictic microspecies ofAlchemilla vulgaris L. Bot. Notiser (1943) 413–427.Google Scholar
  70. 70.
    Turesson, G., and Turesson, B., Experimental studies inHieracium pilosella L. I. Reproduction, chromosome number, and distribution. Hereditas46 (1960) 717–736.Google Scholar
  71. 71.
    Usberti, J.A. Jr, and Jain, S.K., Variation inPanicum maximum: a comparison of sexual and asexual populations. Bot. Gaz.139 (1978) 112–116.Google Scholar
  72. 72.
    Vandel, A., La parthenogenese geographique. Contribution a l'etude biologique et cytologique de la parthenogenese naturelle. Bull. biol. Fr. Belg.62 (1928) 164–281.Google Scholar
  73. 73.
    Vandel, A., La parthenogenese geographique. IV. Polyploidie et distribution geographique. Bull. biol. Fr. Belg.74 (1940) 94–100.Google Scholar
  74. 74.
    Watanabe, K., Fukuhara, T., and Huziwara, Y., Studies on the AsianEupatorias. I.Eupatorium chinese var.simplicifolium from the Rokko Mountains. Bot. Mag. Tokyo95 (1982) 261–280.Google Scholar
  75. 75.
    White, M.J.D., Animal cytology and evolution. Cambridge U. Press, Cambridge, England 1973.Google Scholar
  76. 76.
    Wolf, S.J., Cytogeographical studies in genusArnica (Compositae: Senecioneae). I. Am. J. Bot.67 (1980) 300–308.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1985

Authors and Affiliations

  • P. Bierzychudek
    • 1
  1. 1.Department of BiologyPomona College, and Claremont Graduate SchoolClaremontUSA

Personalised recommendations