Acta Mathematica Hungarica

, Volume 54, Issue 3–4, pp 269–278 | Cite as

On almost symmetric sequences inLp

  • I. Berkes


Symmetric Sequence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. J. Aldous, Limit theorems for subsequences of arbitrarily dependent sequences of random variables,Z. Wahrscheinlichkeitstheorie verw. Gebiete,40 (1977), 59–82.CrossRefGoogle Scholar
  2. [2]
    I. Berkes and H. P. Rosenthal, Almost exchangeable sequences of random variables,Z. Wahrscheinlichkeitstheorie verw. Gebiete,70 (1985), 473–507.CrossRefGoogle Scholar
  3. [3]
    P. Billingsley,Convergence of Probability Measures, Wiley (New York, 1968).Google Scholar
  4. [4]
    P. Billingsley and F. Topsøe, Uniformity in weak convergence,Z. Wahrscheinlichkeitstheorie verw. Gebiete,7 (1967), 1–16.CrossRefGoogle Scholar
  5. [5]
    W. Feller,An Introduction to Probability Theory and its Applications, Vol. II, 2nd Edition, Wiley (New York, 1970).Google Scholar
  6. [6]
    S. Guerre, Types and suites symétriques dansL p, 1≦p<+∞,Israel J. Math. (to appear).Google Scholar
  7. [7]
    S. Guerre, Sur les suites presque échangeables dansL q, 1≦q<2,Israel J. Math. (to appear).Google Scholar
  8. [8]
    S. Guerre and Y. Raynaud, On sequences with no almost symmetric subsequence.Longhorn Notes, University of Texas, 1985–86, pp. 83–93.Google Scholar
  9. [9]
    W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri,Symmetric structures in Banach spaces, Memoirs of the AMS, No. 217 (Providence, Rhode Island, 1979).Google Scholar
  10. [10]
    P. Lévy, Propriétés asymptotiques des sommes aléatoires indépendantes ou enchaînées,Journ. de Math.,14 (1935), 347–402.Google Scholar
  11. [11]
    J. Marczinkiewicz and A. Zygmund, Quelques théorèmes sur les fonctions indépendantes,Studia Math.,7 (1938), 104–120.Google Scholar
  12. [12]
    B. Maurey,Sur un résultat de H. P. Rosenthal, unpublished manuscript.Google Scholar
  13. [13]
    R. Ranga Rao, Relations between weak and uniform convergence of measures with applications,Ann. of Math. Statist.,33 (1962), 659–680.Google Scholar
  14. [14]
    H. P. Rosenthal, On subspaces ofL p,Ann. of Math.,97 (1973), 344–373.Google Scholar

Copyright information

© Akadémia Kiadó 1989

Authors and Affiliations

  • I. Berkes
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapest

Personalised recommendations