, Volume 45, Issue 5, pp 436–443 | Cite as

Isoquinolines, beta-carbolines and alcohol drinking: Involvement of opioid and dopaminergic mechanisms

  • R. D. Myers


Two classes of amine-aldehyde adducts, the tetrahydroisoquinoline (TIQ) and beta-carboline (THBC) compounds, have been implicated in the mechanism in the brain underlying the addictive drinking of alcohol. One part of this review focuses on the large amount of evidence unequivocally demonstrating not only the corporeal synthesis of the TIQs and THBCs but their sequestration in brain tissue as well. Experimental studies published recently have revealed that exposure to alcohol enhances markedly the endogenous formation of condensation products. Apart from their multiple neuropharmacological actions, certain adducts when delivered directly into the brain of either the rat or monkey, to circumvent the brain's blood-barrier system, can evoke an intense and dose-dependent increase in the voluntary drinking of solutions of alcohol even in noxious concentrations. That the abnormal intake of alcohol is related functionally to opioid receptors in the brain is likely on the basis of several dinstinct lines of evidence which include: the attenuation of alcohol drinking by opioid receptor antagoists; binding of a TIQ to opiate receptors in the brain; and marked differences in enkephalin values in animals genetically predisposed to the ingestion of alcohol. Finally, it is proposed that the dopaminergic reward pathways which traverse the meso-limbic-forebrain systems of the brain more than likely constitute an integrative anatomical substrate for the adduct-opioid cascade of neuronal events which promote and sustain the aberrant drinking of alcohol.

Key words

Alcohol brain tetrahydropapaveroline drinking opiate receptors dopamine beta-carboline aldehyde adducts tetrahydroisoquinolines ethanol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adachi, J., Mizoi, Y., Fukunaga, T., Kogame, M., Ninomiya, I., and Naito, T., Effect of acetaldehyde on urinary salsolinol in healthy man after alcohol intake. Alcohol3 (1986) 215–220.CrossRefPubMedGoogle Scholar
  2. 2.
    Adachi, J., Mizoi, Y., Fukunaga, T., Ueno, Y., Imamichi, H., Ninomiya, I., and Naito, T., Individual difference in urinary excretion of salsolinol in alcoholic patients. Alcohol3 (1986) 371–375.CrossRefPubMedGoogle Scholar
  3. 3.
    Airaksinen, M. M., Mahonen, M., Tuomisto, L., Peura, P., and Eriksson, C. J. P., Tetrahydro-β-carbolines: effect of alcohol intake in rats. Pharmac. Biochem. Behav.18 (1983) 525–529.CrossRefGoogle Scholar
  4. 4.
    Alari, L., Lewander, T., and Sjoquist, B., The effect of ethanol on the brain catecholamine systems in female mice, rats, and guinea pigs. Alc. clin. exp. Res.11 (1987) 144–149.Google Scholar
  5. 5.
    Altshuler, H. L., Phillips, P. E., and Feinhandler, D. A., Alteration of ethanol self-administration by naltrexone. Life Sci.26 (1980) 679–688.CrossRefPubMedGoogle Scholar
  6. 6.
    Blum, K., and Topel, H., Opioid peptides and alcoholism: genetic difficiency and chemical management. Estratto da: New Trends funct. Neurol.1 (1986) 71–83.Google Scholar
  7. 7.
    Blum, K., Briggs, A. H., Trachtenberg, M. C., DeLallo, L., and Wallace, J. E., Enkephalinase inhibition: Regulation of ethanol intake in genetically predisposed mice. Alcohol4 (1987) 449–456.CrossRefPubMedGoogle Scholar
  8. 8.
    Blum, K., Briggs, A. H., Elston, S. F. A., Hirst, M., Hamilton, M. G., and Verebey, K., A common denominator theory of alcohol and opiate dependence: review of similarities and differences, in: Alcohol Tolerance and Dependence, pp. 371–391. Eds J. Crabbe and R. Rigter. Elsevier/North-Holland Biomedical Press, 1980.Google Scholar
  9. 9.
    Blum, K., Briggs, A. H., DeLallo, L., Elston, S. F. A., and Ochoa, R., Whole brain methionine-enkephalin of ethanol-avoiding and ethanol-preferring C57BL mice. Experientia38 (1982) 1469–1470.PubMedGoogle Scholar
  10. 10.
    Borg, S., Kvande, H., Rydberg, U., Terenius, L., and Wahlstrom, A., Endorphin levels in human cerebrospinal fluid during alcohol intoxication and withdrawal. Psychopharmacology78 (1982) 101–103.CrossRefPubMedGoogle Scholar
  11. 11.
    Brien, J. F., Andrews, P. J., Loomis, C. W., and Page, J. A., Gasliquid chromatographic determination of salsolinol in the striatum of rat brain during the calcium carbimide-ethanol interaction. Can. J. Physiol. Pharmac.61 (1983) 632–640.Google Scholar
  12. 12.
    Britton, D. R., Rivier, C., Shier, T., Bloom, F., and Valet, W., In vivo and in vitro effects of tetrahydroisoquinolines and other alkaloids on rat pituitary function. Biochem. Pharmac.31 (1982) 1205–1211.CrossRefGoogle Scholar
  13. 13.
    Brown, Z. W., Amit, A., and Smith, B., Examination of the role of tetrahydroisquinoline alkaloids in the mediation of ethanol consumption in rats. Adv. expl. Med. Biol.126 (1980) 103–120.Google Scholar
  14. 14.
    Buckholtz, N. S., Neurobiology of tetrahydro-β-carbolines. Life Sci.27 (1980) 893–903.CrossRefPubMedGoogle Scholar
  15. 15.
    Cardinale, G. J., Donnerer, J., Finck, A. D., Kantrowitz, J. D., Oka, K., and Spector, S., Morphine and codeine are endogenous components of human cerebrospinal fluid. Life Sci.40 (1987) 301–306.CrossRefPubMedGoogle Scholar
  16. 16.
    Cascio, C. S., and Kellar, K. J., Tetrahydro-β-carbolines: Affinities for tryptamine and serotonergic binding sites. Neuropharmacology12 (1982) 1219–1221.CrossRefGoogle Scholar
  17. 17.
    Cashaw, J. L., Geraghty, C. A., McLaughlin, B. R., and Davis, V. E., A method for determination of subpicomole concentrations of tetrahydropapaveroline in rat brain by high-performance liquid chromatography with electrochemical detection. Analyt. Biochem.162 (1987) 274–282.CrossRefPubMedGoogle Scholar
  18. 18.
    Cashaw, J. L., Geraghty, C. A., McLaughlin, B. R., and Davis, V. E., Effect of acute ethanol administration on brain levels of tetrahydropapaveroline in L-dopa-treated rats. J. Neurosci. Res.18 (1987) 497–503.CrossRefPubMedGoogle Scholar
  19. 19.
    Clow, A., Stolerman, I. P., Murray, R. M., and Sandler, M., Ethanol preference in rats: Increased consumption after intraventricular administration of tetrahydropapaveroline. Neuropharmacology22 (1983) 563–565.CrossRefPubMedGoogle Scholar
  20. 20.
    Chow, A., Topham, A., Saunders, J. B., Murray, R., Sandler, M., The role of salsolinol in alcohol intake and withdrawal, in: Aldehyde Adducts in Alcoholism, pp. 101–113. Ed. M. A. Collins. Alan Liss, New York 1985.Google Scholar
  21. 21.
    Cohen, G., The synaptic properties of some tetrahydroisoquinoline alkaloids. Alc. clin. expl. Res.2 (1978) 121–125.Google Scholar
  22. 22.
    Cohen, G., and Collins, M., Alkaloids from catecholamines in adrenal tissue: Possible role of alcoholism. Science167 (1970) 1749–1751.PubMedGoogle Scholar
  23. 23.
    Collins, D. M., and Myers, R. D., Buspirone attenuates volitional alcohol intake in the chronically drinking monkey. Alcohol4 (1987) 49–56.CrossRefPubMedGoogle Scholar
  24. 24.
    Collins, M. A., A possible neurochemical mechanism for brain and nerve damage associated with chronic alcoholism. Trends pharmac. Sci.3 (1982) 373–375.CrossRefGoogle Scholar
  25. 25.
    Collins, M. A., ed., Aldehyde Adducts in Alcoholism. Alan Liss, New York 1985.Google Scholar
  26. 26.
    Collins, M. A., and Kahn, A. J., Attraction to ethanol solutions in mice: induction by a tetrahydroisoquinoline derivative of L-Dopa. Subs. Alc. Actions/Misuse3 (1982) 299–302.Google Scholar
  27. 27.
    Collins, M. A., Hannigan, J. J., Origitano, T., Moura, D., and Osswald, W., On the occurrence, assay and metabolism of simple tetrahydroisoquinolines in mamalian tissues, in: Beta-Carbolines and Tetrahydroisoquinolines, pp. 155–166. Eds F. Bloom, J. Barchas, M. Sandler and E. Usdin. Alan Liss, New York 1982.Google Scholar
  28. 28.
    Collins, M. A., Nijm, W. P., Borge, G. F., Teas, G., and Goldfarb, C., Dopamine-related tetrahydroisoquinolines: significant urinary excretion by alcoholics after alcohol consumption. Science206 (1979) 1184–1186.PubMedGoogle Scholar
  29. 29.
    Critcher, E. C., and Myers, R. D., Evidence for the hippocampus as a site of action for tetrahydropapaveroline (THP)-or cyanamide-induced alcohol drinking. Alcohol1 (1984) 167.CrossRefGoogle Scholar
  30. 30.
    Critcher, E. C., and Myers, R. D., Cyanamide given ICV or systemically to the rat alters subsequent alcohol drinking. Alcohol4 (1987) 347–353.CrossRefPubMedGoogle Scholar
  31. 31.
    Critcher, E. C., Lin, C. I., Patel, J., and Myers, R. D., Attenuation of alcohol drinking in tetrahydroisoquinoline-treated rats by morphine and naltrexone. Pharmac. Biochem. Behav.18 (1983) 225–229.CrossRefGoogle Scholar
  32. 32.
    Dar, M. S., and Wooles, W. R., The effect of acute ethanol on dopamine metabolism and other neurotransmitters in the hypothalamus and corpus striatum of mice. J. neural Transm.60 (1984) 283–294.CrossRefPubMedGoogle Scholar
  33. 33.
    Davis, V. E., and Walsh, M. J., Alcohol, amines and alkaloids: a possible biochemical basis for alcohol addiction. Science167 (1970) 1005–1007.PubMedGoogle Scholar
  34. 34.
    Duncan, C., and Deitrich, R. A., A critical evaluation of tetrahydroisoquinoline induced ethanol preference in rats. Pharmac. Biochem. Behav.13 (1980) 265–281.CrossRefGoogle Scholar
  35. 35.
    Fertel, R. H., Greenwald, J. E., Schwarz, R., Wong, L., and Bianchine, J., Opiate receptor binding and analgesic effects of the tetrahydroisoquinolines salsolinol and tetrahydropapaveroline. Res. Commun. chem. Path. Pharmac.27 (1980) 3–16.Google Scholar
  36. 36.
    Geller, I., and Purdy, R., Alteration of ethanol preference in rats; effect of β-carbolines, pp. 295–302, in: Alcohol Intoxication and Withdrawall II. Ed. M. M. Gross. Plenum Press, New York 1975.Google Scholar
  37. 37.
    Genazzani, A. R., Nappi, G., Facchinetti, F., Mazzella, G. L., Parini, D., Sinforiani, E., Petraglia, F., and Savoldi, F., Central deficiency of β-endorphin in alcohol addicts. J. clin. Endocr. Metab.55 (1982) 583–586.PubMedGoogle Scholar
  38. 38.
    Gianoulakis, C., and Gupta, A., Inbred strains of mice with variable sensitivity to ethanol exhibit differences in the content and processing of β-endorphin. Life Sci.39 (1986) 2315–2325.CrossRefPubMedGoogle Scholar
  39. 39.
    Hamilton, M. G., Blum, K., and Hirst, M., Identification of an isoquinoline alkaloid after chronic exposure to ethanol. Alc. clin. expl. Res.2 (1978) 133–137.Google Scholar
  40. 40.
    Hannigan, J. J., and Collins, M. A., Tetrahydroisoquinolines and the serotonergic system. Drug Alc. Depend.4 (1979) 235–237.CrossRefGoogle Scholar
  41. 41.
    Hellevuo, K., and Korpi, E. R., Failure of Ro-15-4513 to antagonize ethanol in rat lines selected for differential sensitivity to ethanol and in Wistar rats. Pharmac. Biochem. Behav.30 (1988) 183–188.CrossRefGoogle Scholar
  42. 42.
    Hirst, M., Evans, D. R., and Gowdey, C. W., Salsolinol in urine of social drinkers. Prog. clin. biol. Res.90 (1985) 85–100.Google Scholar
  43. 43.
    Hirst, M., Evans, D. R., and Gowdey, C. W., Salsolinol in urine following chocolate consumption by social drinkers. Alc. Drug Res.7 (1987) 493–501.Google Scholar
  44. 44.
    Hirst, M., Evans, D. R., Gowdey, C. W., and Adams, A., The influences of ethanol and other factors on the excretion of urinary salsolinol in social drinkers. Pharmac. Biochem. Behav.22 (1985) 993–1000.CrossRefGoogle Scholar
  45. 45.
    Hirst, M., Adams, M. A., Okamoto, S., Gowdey, C. W., Evans, D. R., and LeBarr, J. M., Tetrahydroisoquinolines after ethanol consumption, in: β-Carbolines and Tetrahydroisoquinolines, pp. 81–96. Eds F. Bloom, J. Barchas, M. Sandler and E. Usdin. Alan Liss, New York 1982.Google Scholar
  46. 46.
    Ho, A. K. S., and Rossi, N., Suppression of ethanol consumption by MET-enkephalin in rats. J. Pharm. Pharmac.34 (1982) 118–119.Google Scholar
  47. 47.
    Hoffman, I. S., and Cubeddu, L. X., Presynaptic effects of tetrahydropapaveroline on striatal dopaminergic neurons. J. Pharnac. expl. Ther.220 (1982) 16–22.Google Scholar
  48. 48.
    Huttunen, P., and Myers, R. D., Tetrahydro-β-carboline micro-injected into the hippocampus induces an anxiety-like state in the rat. Pharmac. Biochem. Behav.24 (1986) 1733–1738.CrossRefGoogle Scholar
  49. 49.
    Huttunen, P., and Myers, R. D., Anatomical localization in hippocampus of tetrahydro-β-carboline-induced alcohol drinking in the rat. Alcohol4 (1987) 181–187.CrossRefPubMedGoogle Scholar
  50. 50.
    Imperato, A., and Di Chiara, G., Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J. Pharmac. expl. Ther.239 (1986) 219–228.Google Scholar
  51. 51.
    Kiianmaa, K., Andersson, K., and Fuxe, K., On the role of ascending dopamine systems in the control of voluntary ethanol intake and ethanol intoxication. Pharmac. Biochem. Behav.10 (1979) 605–608.Google Scholar
  52. 52.
    Koda, L. Y., Koob, G. F., Shier, W. T., and Bloom, F. E., Tetrahydropapaveroline induces small granular vesicles in brain dopamine fibres. Nature276 (1978) 281–283.PubMedGoogle Scholar
  53. 53.
    Korpi, E. R., Sinclair, G. F., and Malminen, O., Dopamine D2 receptor binding in striatal membranes of rat lines selected for differences in alcohol-related behaviours. Pharmac. Toxic.61 (1987) 94–97.Google Scholar
  54. 54.
    Levy, A. D., and Ellison, G., Amphetamine-induced enhancement of ethanol consumption: Role of central catecholamines. Psychopharmacology86 (1985) 233–236.CrossRefPubMedGoogle Scholar
  55. 55.
    Liljequist, S., Changes in the sensitivity of dopamine receptors in the nucleus accumbens and in the striatum induced by chronic ethanol administration. Acta pharmac. tox.43 (1978) 19–28.Google Scholar
  56. 56.
    Lister, R. G., and Nutt, D. J., Is Ro-15-4513 a specific alcohol antagonist? Trends Neurosci.10 (1987) 223–225.CrossRefGoogle Scholar
  57. 57.
    Lucchi, L., Rius, R. A., Uzumaki, H., Govoni, S., and Trabucchi, M., Chronic ethanol changes opiate receptor function in rat striatum. Brain Res.293 (1984) 368–371.CrossRefPubMedGoogle Scholar
  58. 58.
    Makowski, E., and Ordonez, L. A., Behavioral alterations induced by formaldehyde-derived tetrahydroisoquinolines. Pharmac. Biochem. Behav.14 (1981) 639–643.CrossRefGoogle Scholar
  59. 59.
    Matsubara, K., Akane, A., Maseda, C., Takahashi, S., and Fukui, Y., Salsolinol in the urine of nonalcoholic individuals after long-term moderate drinking. Alc. Drug Res.6 (1986) 281–288.Google Scholar
  60. 60.
    Matsubara, K., Fukushima, S., and Fukui, Y., A systematic regional study of brain salsolinol levels during and immediately following chronic ethanol ingestion in rats. Brain Res.413 (1987) 336–343.CrossRefPubMedGoogle Scholar
  61. 61.
    Melchior, C., and Collins, M. A., The route and significance of endogenous synthesis of alkaloids in animals, in: CRC Critical Reviews in Toxicology, pp. 313–356. CRC Press, Boca Rotan, Fl. 1982.Google Scholar
  62. 62.
    Melchior, C. L., Mueller, A., and Deitrich, R. A., Half-lives of salsolinol and tetrahydropapaveroline hydrobromide following intracerebroventricular injection. Biochem. Pharmac.29 (1980) 657–658.CrossRefGoogle Scholar
  63. 63.
    Melchior, C. L., and Myers, R. D., Genetic differences in ethanol drinking of the rat following injection of 6-OHDA, 5,6-DHT or 5,8-DHT into the cerebral ventricles. Pharmac. Biochem. Behav.5 (1976) 63–72.CrossRefGoogle Scholar
  64. 64.
    Melchior, C. L., and Myers, R. D., Preference for alcohol evoked by tetrahydropapaveroline (THP) chronically infused in the cerebral ventricle of the rat. Pharmac. Biochem. Behav.7 (1977) 19–35.CrossRefGoogle Scholar
  65. 65.
    Melchior, C. L., and Myers, R. D., Alcohol drinking induced in the rat after chronic injections of tetrahydropapaveroline (THP), salsolinol or noreleagnine in the brain, in: Alcohol and Aldehyde Metabolizing Systems, vol. III, pp. 545–554. Eds R. G. Thurman, J. R. Williamson, B. Chanee,and R. H. Drott. Academic Press, New York 1977.Google Scholar
  66. 66.
    Melchior, C. L., Simpson, C. W., and Myers, R. D., Dopamine release within forebrain sites perfused with tetrahydroisoquinolines or tryptoline in the rat. Brain Res. Bull.3 (1978) 631–634.CrossRefPubMedGoogle Scholar
  67. 67.
    Meller, E., Friedman, E., Schweitzer, J. W., and Friedhoff, A. J., Tetrahydro-β-carbolines: Specific inhibitors of Type A monoamine oxidase in rat brain. J. Neurochem.28 (1977) 995–1000.PubMedGoogle Scholar
  68. 68.
    Messiha, F. S., Larson, J. W., and Geller, I., Voluntary ethanol drinking by the rat: Effects of 2-aminoethylisothiouronium salt, a modifier of NAD: NADH and noreleagnine, a β-carboline derivative. Pharmacology15 (1977) 400–406.PubMedGoogle Scholar
  69. 69.
    Minano, F. J., and Myers, R. D., Inhibition of dopa-decarboxylase in brain by Ro4-4602 on voluntary intake of alcohol induced by cyanamide. Psychopharmacology, (1989) in press.Google Scholar
  70. 70.
    Murphy, J. M., McBride, W. J., Gatto, G. J., Lumeng, L., and Li, T.-K., Effects of acute ethanol administration on monamine and metabolite content in forebrain regions of ethanol-tolerant and-non-tolerant alcohol-preferring (P) rats. Pharmac. Biochem. Behav.29 (1988) 169–174.CrossRefGoogle Scholar
  71. 71.
    Myers, R. D., Psychopharmacology of alcohol. A. Rev. Pharmac. Toxic.18 (1978) 125–144.CrossRefGoogle Scholar
  72. 72.
    Myers, R. D., Pharmacological effects of amine-aldehyde condensation products, in: Alcohol Tolerance and Dependence, pp. 339–370. Eds H. Rigter and J. Crabbe. Elsevier, The Netherlands 1980.Google Scholar
  73. 73.
    Myers, R. D., Multiple metabolite theory, alcohol drinking and the alcogene, in: Aldehyde Adducts in Alcoholism, pp. 201–220. Ed. M. A. Collins. Alan Liss, New York 1985.Google Scholar
  74. 74.
    Myers, R. D., Alkaloid metabolites and addictive drinking of alcohol. NIAAA Research Monograph 17, pp. 268–284. Eds N. C. Chang and H. M. Chao. 1985.Google Scholar
  75. 75.
    Myers, R. D., and Critcher, E. C., Naloxone alters alcohol drinking induced in the rat by tetrahydropapaveroline (THP) infused ICV. Pharmac. Biochem. Behav.16 (1982) 827–836.CrossRefGoogle Scholar
  76. 76.
    Myers, R. D., and Melchior, C. L., Alcohol drining in the rat after destruction of serotonergic and catecholaminergic neurons in the brain. Res. Commun. chem. Path. Pharm.10 (1975) 363–378.PubMedGoogle Scholar
  77. 77.
    Myers, R. D., and Melchior, C. L., Alcohol drinking: Abnormal intake caused by tetrahydropapaveroline in brain. Science196 (1977) 554–556.PubMedGoogle Scholar
  78. 78.
    Myers, R. D., and Melchior, C. L., Differential actions on voluntary alcohol intake of tetrahydroisoquinolines or a β-carboline infused chronically in the ventricle of the rat. Pharmac. Biochem. Behav.7 (1977) 381–392.CrossRefGoogle Scholar
  79. 79.
    Myers, R. D., and Oblinger, M., Alcohol drinking in the rat induced by acute intracerebral infusion of two tetrahydroisoquinolines and a β-carboline. Drug Alc. Depend.2 (1977) 469–483.CrossRefGoogle Scholar
  80. 80.
    Myers, R. D., and Privette, T. H., A neuroanatomical substrate for alcohol drinking: Identification of tetrahydropapaveroline (THP)-reactive sites in the rat brain. Brain Res. Bull.22 (1989) in press.Google Scholar
  81. 81.
    Myers, R. D., and Ruwe, W. D., Is alcohol-induced poikilothermia mediated by 5-HT and catecholamine receptors or by ionic set-point mechanism in the brain? Pharmac. Biochem. Behav.16 (1982) 321–327.CrossRefGoogle Scholar
  82. 82.
    Myers, R. D., Borg, S., and Mossberg, R., Antagonism by naltrexone of voluntary alcohol selection in the chronically drinking macaque monkey. Alcohol3 (1986) 383–388.CrossRefPubMedGoogle Scholar
  83. 83.
    Myers, R. D., Garrison, J. L., and Critcher, E. C., Degradation characteristics of two tetrahydroisoquinolines at room and body temperature: HPLC determination with electrochemical detection. J. liquid Chromat.6 (1983) 343–352.Google Scholar
  84. 84.
    Myers, R. D., McCaleb, M. L., and Ruwe, W. D., Alcohol drinking induced in the monkey by tetrahydropapaveroline (THP) infused into the cerebral ventricle. Pharmac. Biochem. Behav.16 (1982) 995–1000.CrossRefGoogle Scholar
  85. 85.
    Myers, R. D., Melchior, C., and Swartzwelder, H. S., Amine-aldehyde metabolites and alcoholism: Fact, myth or uncertainy. Subs. Alc. Actions/Misuse1 (1980) 223–238.Google Scholar
  86. 86.
    Myers, R. D., Swartzwelder, H. S., and Holahan, W., Effect of hippocampal lesions produced by intracerebroventricular kainic acid on alcohol drinking in the rat. Brain Res. Bull.10 (1983) 333–338.CrossRefPubMedGoogle Scholar
  87. 87.
    Myers, W. D., Ng, K. T., Marzuki, S., Myers, R. D., and Singer, G., Alteration of alcohol drinking in the rat by peripherally self-administered acetaldehyde. Alcohol1 (1984) 229–236.CrossRefPubMedGoogle Scholar
  88. 88.
    Myers, W. D., Ng, K. T., Singer, G., Smythe, G. A., and Duncan, M. W., Dopamine and salsolinol levels in rat hypothalami and striatum after schedule-induced self-injection (SISI) of ethanol and acetaldehyde. Brain Res.358 (1985) 122–128.CrossRefPubMedGoogle Scholar
  89. 89.
    Myers, W. D., Mackenzie, L., Ng, K. T., Singer, G., Smythe, G. A., and Duncan, M. W., Salsolinol and dopamine in rat medial basal hypothalamus after chronic ethanol exposure. Life Sci.36 (1985) 309–314.CrossRefPubMedGoogle Scholar
  90. 90.
    Nesterick, C. A., and Rahwan, R. G., Detection of endogenous salsolinol in neonatal rat tissue by a radioenzymatic-thin layer chromatographic assay. J. Chromat.164 (1979) 205–216.Google Scholar
  91. 91.
    Nimit, Y., Schulze, I., Cashaw, J. L., Ruchirawat, S., and Davis, V. E., Interaction of catecholamine-derived alkaloids with central neurotransmitter receptors. J. Neurosci. Res.10 (1983) 175–189.CrossRefPubMedGoogle Scholar
  92. 92.
    Nimitkitpaisan, Y., and Skolnick, P., Catecholamine receptors and cyclic AMP formation in the central nervous system: effects of tetrahydroisoquinoline derivatives. Life Sci.23 (1978) 373–382.CrossRefGoogle Scholar
  93. 93.
    O'Neill, P. J., and Rahwan, R. G., Absence of formation of brain salsolinol in ethanol-dependent mice. J. Pharmac. expl. Ther.200 (1977) 306–313.Google Scholar
  94. 94.
    Origitano, T. C., and Collins, M. A., Confirmation of an unexpected brain O-methylation pattern for the dopamine-derived tetrahydroisoquinoline, salsolinol. Life Sci.26 (1980) 2061–2065.CrossRefPubMedGoogle Scholar
  95. 95.
    Perry, T. L., Jones, K., and Hansen, S., Tetrahydroisoquinoline lacks dopaminergic nigrostriatal neurotoxicity in mice. Neurosci. Lett.85 (1988) 101–104.CrossRefPubMedGoogle Scholar
  96. 96.
    Pfeffer, A. O., and Samson, H. H., Haloperidol and apomorphine effects on ethanol reinforcement in free feeding rats. Pharmac. Biochem. Behav.29 (1988) 343–350.CrossRefGoogle Scholar
  97. 97.
    Peura, P., Mackenzie, P., Koivusaari, U., and Lang, M., Increased fluidity of a model membrane caused by tetrahydro-β-carbolines. Molec. Pharmac.22 (1982) 721–724.Google Scholar
  98. 98.
    Peura, P., Airaksinen, M., Tuomisto, L., Saano, V., and Eriksson, C. J. P., L-methyl-tetrahydro-B-carboline in human blood after alcohol intake. Proc. Finn. Symp. Biol. Med. Eff. Alc. (1981) 1135.Google Scholar
  99. 99.
    Privette, T. H., and Myers, R. D., Alcohol drinking: Role of neurotransmitter metabolites. Proc. natl Conf. Alc. Res. Raleigh, NC, 1987.Google Scholar
  100. 100.
    Privette, T. H., Hornsby, R. L., and Myers, R. D., Buspirone alters alcohol drinking in rats by tetrahydropapaveroline injected into brain monoamine pathways. Alcohol5 (1988) 147–152.CrossRefPubMedGoogle Scholar
  101. 101.
    Purvis, P. L., Hirst, M., and Baskerville, J. C., Voluntary ethanol consumption in the rat following peripheral administrations of 3-carboxysalsolinol. Subs. Alc. Actions/Misuse1 (1980) 439–445.Google Scholar
  102. 102.
    Rezvani, A. H., Mack, C. M., Crovi, S. I., and Myers, R. D., Central Ca++-channel blockade reverses ethanol-induced poikilothermia in the rat. Alcohol3 (1986) 273–279.CrossRefPubMedGoogle Scholar
  103. 103.
    Richardson, J. S., and Novakovski, D. M., Brain monoamines and free choice ethanol consumption in rats. Drug Alc. Depend.3 (1978) 253–264.CrossRefGoogle Scholar
  104. 104.
    Rommelspacher, H., Buchau, C., and Weiss, J., Harman induces preference for ethanol in rats: Is the effect specific for ethanol. Pharmac. Biochem. Behav.26 (1987) 749–755.CrossRefGoogle Scholar
  105. 105.
    Rommelspacher, H., and Schmidt, L., Increased formation of β-carbolines in alcoholic patients following ingestion of ethanol. Pharmacopsychiatry18 (1985) 153–154.Google Scholar
  106. 106.
    Rommelspacher, H., and Subramanian, N., Tetrahydronorharmane modulates the depolarisation-induced efflux of 5-hydroxytryptamine and dopamine and is released by high potassium concentration from rat brain slices. Eur. J. Pharmac.56 (1979) 81–86.CrossRefGoogle Scholar
  107. 107.
    Rommelspacher, H., Damm, H., Strauss, S., and Schmidt, G., Ethanol induces an increase of harmane in the brain and urine of rats. Naunyn-Schmiedebergs Arch. Pharmak.327 (1984) 107–113.CrossRefGoogle Scholar
  108. 108.
    Russell, V. A., Lamm, M. C. L., and Taljaard, J. J. F., Effect of ethanol on [3H]dopamine release in rat nucleus accumbens and striatal slices. Neurochem. Res.13 (1988) 487–492.CrossRefPubMedGoogle Scholar
  109. 109.
    Samson, H. H., Tolliver, G. D., Pfeffer, A. O., Sadeghi, K. G., and Mills, F. G., Oral ethanol reiforcement in the rat: Effect of the partial inverse benzodiazepine agonist Ro15-4513. Pharmac. Biochem. Behav.27 (1987) 517–519.CrossRefGoogle Scholar
  110. 110.
    Sandi, C., Borrell, J., and Guzaz, C., Naloxone decreases ethanol consumption within a free choice paradigm in rats. Pharmac. Biochem. Behav.29 (1988) 39–43.CrossRefGoogle Scholar
  111. 111.
    Sandler, M., Carter, S. B., Hunter, K. R., and Stern, G. M., Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man. Nature241 (1973) 439–443.PubMedGoogle Scholar
  112. 112.
    Sandler, M., Glover, V., Armando, I., and Clow, A., Pictet-spengler condensation products, stress and alcoholism: some clinical overtones. Prog. clin. biol. Res.90 (1982) 215–226.PubMedGoogle Scholar
  113. 113.
    Sasaoka, T., Kaneda, N., Niwa, T., Hashizume, Y., and Nagatsu, T., Analysis of salsolinol in human brain using high-performance liquid chromatography with electrochemical detection. J. Chromat.428 (1988) 152–155.Google Scholar
  114. 114.
    Schechter, M. D., Ability of 3-carboxysalsolinol to produce ethanol-like discrimination in rats. Psychopharmacology68 (1980) 277–281.CrossRefPubMedGoogle Scholar
  115. 115.
    Signs, S. A., and Schechter, M. D., The role of dopamine and serotonin receptors in the mediation of the ethanol interoceptive cue. Pharmac. Biochem. Behav.30 (1988) 55–64.CrossRefGoogle Scholar
  116. 116.
    Sinclair, J. D., and Myers, R. D., Cerebroventricular tetrahydropapaveroline infusions and ethanol consumption in the rat. Subs. Alc. Actions/Misuse3 (1982) 5–24.Google Scholar
  117. 117.
    Sjöquist, B., Borg, S., and Kvande, H., Catecholamine derived compounds in urine and cerebrospinal fluid from alcoholics during and after long-standing intoxication. Subs. Alc. Actions/Misuse2 (1981) 63–72.Google Scholar
  118. 118.
    Sjöquist, B., Borg, S., and Kvande, H., Salsolinol and methylated salsolinol in urine and cerebrospinal fluid in healthy volunteers. Subs. Alc. Actions/Misuse2 (1981) 73–77.Google Scholar
  119. 119.
    Sjöquist, B., Johnson, H. A., and Borg, S., The influence of acute ethanol on the catecholamine system in man as reflected in cerebrospinal fluid and urine. A new condensation product, 1-carboxysalsolinol. Drug Alc. Depend.16 (1985) 241–249.CrossRefGoogle Scholar
  120. 120.
    Sjöquist, B., Liljequist, S., and Engel, J., Increased salsolinol levels in rat striatum and limbic forebrain following chronic ethanol treatment. J. Neurochem.39 (1982) 259–262.PubMedGoogle Scholar
  121. 121.
    Sjöquist, B., Perdahl, E., and Winblad, B., The effect of alcoholism on salsolinol and biogenic amines in human brain. Drug. Alc. Depend.12 (1983) 15–23.CrossRefGoogle Scholar
  122. 122.
    Sjöquist, B., Eriksson, A., and Winblad, B., Salsolinol and catecholamines in human brain and their relation to alcoholism, in: β-Carbolines and Tetrahydroisoquinolines, pp. 57–67. Eds F. Bloom, J. Barchas, M. Sandler and E. Usdin. Alan Liss, New York 1982.Google Scholar
  123. 123.
    Suzdak, P. D., Paul, S. M., and Crawley, J. N., Effects of Ro15-4513 and other benzodiazepine receptor inverse agonists on alcohol-induced intoxication in the rat. J. Pharmac. expl Ther.245 (1988) 880–886.Google Scholar
  124. 124.
    Topel, H., Biochemical basis of alcoholism: Statements and hypotheses of present research. Alcohol2 (1985) 711–788.CrossRefPubMedGoogle Scholar
  125. 125.
    Tuomisto, L., Airaksinen, M. M., Peura, P., and Eriksson, C. J. P., Alcohol drinking in the rat: increases following intracerebroventricular treatment with tetrahydro-β-carbolines. Pharmac. Biochem. Behav.17 (1982) 831–836.CrossRefGoogle Scholar
  126. 126.
    Weiner, H., Simpson, C. W., Thurman, J. A., and Myers, R. D., Disulfiram alters dopamine metabolism at sites in rat's forebrain as detected by push-pull perfusions. Brain Res. Bull.3 (1978) 541–548.CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1989

Authors and Affiliations

  • R. D. Myers
    • 1
  1. 1.Departments of Pharmacology and Psychiatric Medicine, School of MedicineEast Carolina UniversityGreenvilleUSA

Personalised recommendations