, Volume 45, Issue 5, pp 428–435 | Cite as

The effect of ethanol on the biosynthesis and regulation of opioid peptides

  • C. Gianoulakis


Alcoholism and alcohol abuse are serious health problems. Alcohol is known to influence the activity of a number of biological systems, for example the hormonal and neuronal systems. One of the biological systems whose activity is greatly influenced by alcohol is the endogenous opiate system. Alcohol modifies the function of both opiate receptors and opioid peptides. In fact it has been proposed that many of the effects of ethanol are mediated by its effects on the endogenous opiate system. This review will present results from various laboratories on the effects of acute and chronic ethanol treatments on various species, and on the release, biosynthesis and post-translational processing of the endorphins, enkephalins and dynorphins, the three known families of endogenous opioid peptides. Furthermore, the effect of acute and chronic ethanol consumption on the β-endorphin system in man, and the possible implications of the functional activity of the endogenous opiate system for the genetic predisposition to alcoholism will be discussed.

Key words

Acute ethanol chronic ethanol endorphins enkephalin dynorphins release biosynthesis 

abbreviations used






β-endorphin like peptides




neurointermediate lobe of the pituitary gland


anterior lobe of the pituitary gland


immunoreactive β-endorphin


adrenal corticotropin


corticotropin releasing factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akil, H., Shiomi, H., and Matthews, J., Induction of intermediate pituitary by stress: synthesis and release of a nonopioid form of β-endorphin. Science227 (1985) 424–426.PubMedGoogle Scholar
  2. 2.
    Akil, H., Watson, S. J., Young, E., Lewis, M. E., Khachaturian, H., and Walker, J. M., Endogenous opioids: Biology and function. A. Rev. Neurosci.7 (1984) 223–255.CrossRefGoogle Scholar
  3. 3.
    Akil, H., and Watson, S. J., Immunocytochemical localization of proopiomelanocortin derived peptides in the adult spinal cord. Brain Res.378 (1986) 28–35.CrossRefPubMedGoogle Scholar
  4. 4.
    Akil, H., Young, E., and Watson, S. J., Opiate binding properties of naturally occurring N and C-terminus modified β-endorphin. Peptides2 (1981) 289–292.PubMedGoogle Scholar
  5. 5.
    Altshuler, H. L., Philips, P. E., and Feinhandler, D. E., Alteration of ethanol self-administration by naltrexone. Life Sci.26 (1980) 679–688.CrossRefPubMedGoogle Scholar
  6. 6.
    Badawy, A. A. B., Williams, D. L., and Evans, M., Role of tyrosine in the acute effects of ethanol on rat brain catecholamine synthesis. Pharmac. Biochem. Behav.18, Suppl. 1 (1983) 389–396.CrossRefGoogle Scholar
  7. 7.
    Berkenbosch, F., Tilders, F. J. H., and Vermes, I., β-Adrenoceptor activation mediates stress-induced secretion of β-endorphin-related peptides from intermediate but not anterior pituitary. Nature305 (1983) 237–239.CrossRefPubMedGoogle Scholar
  8. 8.
    Blum, K., Briggs, A. H., Elston, S. F. A., DeLallo, L., and Sheridon, P. J., Reduced leucine-enkephalin-like immunoreactive substance in hamster basal ganglia after long-term ethanol exposure. Science216 (1982) 1424–1427.Google Scholar
  9. 9.
    Blum, K., and Topel, H., Opioid peptides and alcoholism: Genetic deficiency and chemical management. Funct. Neurol.1 (1986) 71–83.PubMedGoogle Scholar
  10. 10.
    Branchey, M., Rauscher, G., and Kissin, B., Modification in the response to alcohol following the establishment of physical dependence. Psychopharmacologia22 (1971) 314–322.CrossRefPubMedGoogle Scholar
  11. 11.
    Charness, M. E., Gordon, A. S., and Diamond, I., Ethanol modulation of opiate receptors in cultured neural cells. Science222 (1983) 1246–1248.PubMedGoogle Scholar
  12. 12.
    Chavkin, C., James, I. F., and Goldstein, A., Dynorphin is a specific endogenous ligand of theK opioid receptor. Science215 (1982) 413–415.PubMedGoogle Scholar
  13. 13.
    Cheng, S. S., and Tseng, L. F., Chronic administration of ethanol on pituitary and hypothalamic β-endorphin in rats and golden hamsters. Pharmac. Res. Commun.14 (1982) 1001–1008.Google Scholar
  14. 14.
    Corbett, A. D., Patterson, S. J., McKight, A. I., Magnan, J., and Kosterlitz, H. W., Dynorphin 1–8 and Dynorphin 1–9 are ligands for theK-subtype of opiate receptors. Nature299 (1982) 79–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Crine, P., Gianoulakis, C., Seidah, N. G., Gossard, F., Pezalla, P. D., Lis, M., and Chrétien, M., Biosynthesis of β-endorphin from β-lipotropin and a larger molecular weight precursor in rat pars intermedia. Proc. natl Acad. Sci. USA75 (1978) 4719–4723.PubMedGoogle Scholar
  16. 16.
    Dave, J. R., Giden, L. G., Karanian, J. W., and Eskay, R. L., Ethanol exposure decreases pituitary corticotropin-releasing factor binding, adenylate cyclase, pro-opiomelanocortin biosynthesis and plasma β-endorphin levels in the rat. Endocrinology118 (1986) 280–286.PubMedGoogle Scholar
  17. 17.
    Davies, V. G., and Walsh, M. J., Alcohol, amines and alkaloids: a possible basis for alcohol addiction. Science167 (1970) 1005–1007.PubMedGoogle Scholar
  18. 18.
    Delbende, C., Jegou, S., Tranchand-Bunel, D., Pelletier, G., and Vaudry, H., Hypothalamic α-melanocyte-stimulating hormone (α-MSH) is not under dopaminergic control. Brain Res.423 (1987) 203–212.CrossRefPubMedGoogle Scholar
  19. 19.
    Dores, R. M., Jain, M., and Akil, H., Characterization of the forms of β-endorphin and α-MSH in the caudal medulla of the rat and guinea pig. Brain Res.377 (1986) 251–260.CrossRefPubMedGoogle Scholar
  20. 20.
    Eipper, B. A., and Mains, R. E., Existence of a common precursor to ACTH and endorphin in the anterior and intermediate lobes of the rat pituitary. J. supramolec. Struct.8 (1978) 247–262.CrossRefGoogle Scholar
  21. 21.
    Gianoulakis, C., Long-term ethanol alters the binding of3H-opiates to brain membranes. Life Sci.33 (1983) 725–733.CrossRefPubMedGoogle Scholar
  22. 22.
    Gianoulakis, C., and Barcomb, A., Effect of acute ethanol in vivo and in vitro on the β-endorphin system in the rat. Life Sci.40 (1987) 19–28.CrossRefPubMedGoogle Scholar
  23. 23.
    Gianoulakis, C., Chan, J. S. D., Kalant, H., and Chrétien, M., Chronic ethanol treatment alters the biosynthesis of β-endorphin by the rat neurointermediate lobe. Can. J. Physiol. Pharmac.61 (1983) 967–976.Google Scholar
  24. 24.
    Gianoulakis, C., and Chrétien, M., Endorphins in fetomaternal physiology, in: Principles of Medical Therapy, pp. 162–172. Ed. N. Gleicher. Plenum, New York 1985.Google Scholar
  25. 25.
    Gianoulakis, C., and Gupta, A., Inbred strains of mice with variable sensitivity to ethanol exhibit differences in the content and processing of β-endorphin. Life Sci.39 (1986) 2315–2325.CrossRefPubMedGoogle Scholar
  26. 26.
    Gianoulakis, C., Hutchison, W. D., and Kalant, H., Effects of ethanol treatment and withdrawal on biosynthesis and processing of proopiomelanocortin by the rat neurointermediate lobe. Endocrinology122 (1988) 817–825.PubMedGoogle Scholar
  27. 27.
    Gianoulakis, C., Woo, N., Drouin, J. N., Seidah, N. G., Kalant, H., and Chrétien, M., Biosynthesis of β-endorphin by the neurointermediate lobes from rats treated with morphine or alcohol. Life Sci.29 (1981) 1973–1982.CrossRefPubMedGoogle Scholar
  28. 28.
    Gambert, S. R., Pontjer, C. H., and Barboriak, J. J., Effect of ethanol consumption on central nervous system (CNS) beta-endorphin and ACTH. Horm. Metab. Res.13 (1981) 242–243.PubMedGoogle Scholar
  29. 29.
    Ganazzani, A., Nappi, G., Facchinetti, F., Sinforiani, E., Petraglia, F., and Savoldi, F., Central deficiency of β-endorphin in alchol addicts. Clin. Endocr. Metab.55 (1982) 583–586.Google Scholar
  30. 30.
    Gibbs, D. M., Stewart, R. D., Vale, W., Rivier, J., and Yen, S. S. C., Synthetic corticotropin-releasing factor stimulates secretion of immunoreactive beta-endorphin/beta-lipotropin and ACTH by human fetal pituitaries in vitro. Life Sci.32 (1982) 547–550.CrossRefGoogle Scholar
  31. 31.
    Goldstein, D. B., Chin, J. H., and Lyon, R. C., Disordering of spinlabeled mouse brain membranes. Correlation with genetically determined ethanol sensitivity of mice. Proc. natl Acad. Sci. USA79 (1982) 4231–4233.PubMedGoogle Scholar
  32. 32.
    Guillemin, R., Vargo, T., Rossier, J., Minick, S., Ling, N., Rivier, C., Vale, W., and Bloom, F., β-Endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science196 (1977) 1367–1369.Google Scholar
  33. 33.
    Ham, J., and Smyth, D. G., β-Endorphin processing in pituitary and brain is sensitive to haloperiodol stimulation. Neuropeptides5 (1985) 497–500.CrossRefPubMedGoogle Scholar
  34. 34.
    Harris, R. A., and Schrogder, F., Ethanol and the physical properties of brain membranes. Fluorescence studies. Molec. Pharmac.20 (1981) 128–137.Google Scholar
  35. 35.
    Hughes, J., Smith, T., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A., and Morris, H. R., Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature258 (1975) 577–579.PubMedGoogle Scholar
  36. 36.
    Hutchison, W. D., Gianoulakis, C., and Kalant, H., Effects of ethanol withdrawal on β-endorphin levels in rat brain and pituitary. Pharmac. Biochem. Behav.30 (1988) 933–939.CrossRefGoogle Scholar
  37. 37.
    Jenkins, J. S., and Conolly, J., Adrenocortical response to ethanol in man. Br. med. J.2 (1968) 804–805.PubMedGoogle Scholar
  38. 38.
    Kakidani, H., Furutami, Y., Takahashi, H., Noda, M., Mozimoto, Y., Hirose, T., Asai, M., Inayama, S., Nakanishi, S., and Numa, S., Cloning and sequence analysis of CDNA for porcine β-neoendorphin/dynorphin precursor. Nature298 (1982) 245–249.CrossRefPubMedGoogle Scholar
  39. 39.
    Kalant, H., Alcohol withdrawal syndrome in the human: Comparison with animal models, in: Alcohol Intoxication and Withdrawal. Vol. 111 B, pp. 57–63. Ed. M. M. Gross. Plenum Press, New York 1977.Google Scholar
  40. 40.
    Khachaturian, H., Watson, S. J., Lewis, M. E., Coy, D., Goldstein, A., and Akil, H., Dynorphin immunocytochemistry in the rat central nervous system. Peptides3 (1982) 941–954.CrossRefPubMedGoogle Scholar
  41. 41.
    Khanna, J. M., Kalant, H., and Bustos, G., Effects of chronic intake of ethanol on the rate of ethanol metabolism. II. Influence of sex and of schedule of ethanol administration. Can. J. Physiol. Pharmac.45 (1967) 777–785.Google Scholar
  42. 42.
    Khanna, J. M., Le, A. D., Kalant, H., and Leblanc, A. E., Cross-tolerance between ethanol and morphine with respect to their hypothermic effects. Eur. J. Pharmac.59 (1979) 145–149.CrossRefGoogle Scholar
  43. 43.
    Keith, L. D., Crabbe, J., Robertson, L. M., and Kendall, J. W., Ethanol stimulated endorphin and corticotropin secretion in vitro. Brain Res.367 (1986) 222–229.CrossRefPubMedGoogle Scholar
  44. 44.
    Kiianmaa, K., and Tabakoff, B., Neurochemical correlates of tolerance and strain differences in the neurochemical effects of ethanol. Pharmac. Biochem. Behav.18, Suppl. 1 (1983) 383–388.CrossRefGoogle Scholar
  45. 45.
    Kilpatrick, D. L., and Rosenthal, J. L., The pro-enkephalin gene is widely expressed within the male and female reproductive systems of the rat and hamster. Endocrinology119 (1986) 370–374.PubMedGoogle Scholar
  46. 46.
    Leppaluoto, J., Rapeli, M., Varis, R., and Ranta, T., Secretion of anterior pituitary hormones in man: Effects of ethyl alcohol. Acta physiol. scand.95 (1975) 400–406.PubMedGoogle Scholar
  47. 47.
    Lis, M., Larivière, N., Maurice, G., Julesz, J., Seidah, N., and Chrétien, M., Concomitant changes of ACTH, β-endorphin and N-terminal portion of pro-opiomelanocortin in rats. Life Sci.30 (1982) 1159–1164.CrossRefPubMedGoogle Scholar
  48. 48.
    Liotta, A. S., Loudes, C., McKelvy, J. F., and Krieger, D. T., Biosynthesis of precursor corticotropin/endorphin-corticotropin-, α-melanotropin-, β-lipotropin-, and β-endorphin-like material by cultured neonatal rat hypothalamic neurons. Proc. natl Acad. Sci. USA77 (1980) 1880–1884.PubMedGoogle Scholar
  49. 49.
    Locafelli, V., Petraglia, F., Panalva, A., and Panerai, A. E., Effect of dopaminergic drugs on hypothalamic and pituitary immunoreactive β-endorphin concentrations in the rat. Life Sci.33 (1983) 1711–1717.CrossRefPubMedGoogle Scholar
  50. 50.
    Lolait, S. J., Autelitano, D. J., Lim, A. T. W., Smith, A. I., Toh, B. H., and Funder, J. W., Ovarian immunoreactive β-endorphin and estrous cycle in the rat. Endocrinology117 (1985) 161–168.PubMedGoogle Scholar
  51. 51.
    Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W., Endogenous opioid peptides. Multiple agonists and receptors. Nature267 (1976) 495–499.Google Scholar
  52. 52.
    Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E., and Gilbert, P. E., The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmac. exp. Ther.197 (1976) 517–532.Google Scholar
  53. 53.
    Merry, J., and Marks, V., Plasma hydrocortisone response to ethanol in chronic alcoholics. Lancet1 (1969) 921.CrossRefPubMedGoogle Scholar
  54. 54.
    Naber, D., Soble, M. G., and Pickar, D., Ethanol increases opioid activity in plasma of normal volunteers. Pharmacopsychiatry14 (1981) 160–161.Google Scholar
  55. 55.
    Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A. C. T., Cohen, N. S., and Numa, S., Nucleotide sequence of cloned cDNA for bovine corticotropin-β-lipotropin precursor. Nature278 (1979) 423–427.PubMedGoogle Scholar
  56. 56.
    Noda, M., Teranishi, Y., Takahashi, H., Toyosato, M., Notake, M., Shigetada, N., and Numa, S., Isolation and structural organization of the human pre-proenkephalin gene. Nature297 (1982) 431–434.CrossRefPubMedGoogle Scholar
  57. 57.
    Nussbaum, S. R., Carr, D. B., Bergland, R. M., Kliman, B., Fisher, J., Reiner, B., Kleshinski, S., and Rosenblatt, M., Dynamics of cortisol and endorphin responses to graded doses of synthetic ovine CRF in sheep. Endocrinology112 (1983) 877–879.PubMedGoogle Scholar
  58. 58.
    Przewlocki, R., Höllt, V., Voight, K. H., and Herz, A., Modulation of in vitro release of β-endorphin from the separate lobes of the rat pituitary. Life Sci.24 (1979) 1601–1608.CrossRefPubMedGoogle Scholar
  59. 59.
    Redei, E., Branch, J. B., and Taylor, A. N., Direct effect of ethanol on adrenocorticotropin (ACTH) release in vitro. J. Pharmac. exp. Ther.237 (1986) 59–64.Google Scholar
  60. 60.
    Rivier, C., Bruhn, T., and Vale, W., Effect of ethanol on the hypothalamic-pituitary-adrenal axis in the rat: role of corticotropin-releasing factor (CRF). J. Pharmac. exp. Ther.229 (1984) 127–131.Google Scholar
  61. 61.
    Ross, D. H., Selective action of alcohols on cerebral calcium levels. Ann. N.Y. Acad. Sci.273 (1976) 280–294.PubMedGoogle Scholar
  62. 62.
    Savoldi, F., Opioid peptides in alcoholics, in: Central and Peripheral Endorphins, pp. 333–338. Eds E. E. Müller and A. Genazzani. Raven Press, New York 1984.Google Scholar
  63. 63.
    Schultzberg, M., Hökfelt, T., Lundberg, J. M., Terenius, L., Elfvin, L. G., and Elde, R., Enkephalin-like immunoreactivity in nerve terminals in sympathetic ganglia and adrenal medulla and in adrenal medullary gland cells. Acta physiol. scand.103 (1978) 475–477.PubMedGoogle Scholar
  64. 64.
    Schulz, R., Wuster, M., Duka, T., and Herz, A., Acute and chronic ethanol treatment changes endorphin levels in brain and pituitary. Psychopharmacology68 (1980) 221–227.CrossRefPubMedGoogle Scholar
  65. 65.
    Seizinger, B. R., Bovermann, K., Maysinger, D., Höllt, V., and Herz, A., Differential effects of acute and chronic ethanol treatment on particular opioid peptide systems in discrete regions of rat brain and pituitary. Pharmac. Biochem. Behav.18 (1983) 361–369.CrossRefGoogle Scholar
  66. 66.
    Seizinger, B. R., Bovermann, K., Höllt, V., and Herz, A., Enhanced activity of the endorphinergic system in the anterior and neurointermediate lobe of the rat pituitary gland after chronic treatment with ethanol liquid diet. J. Pharmac. exp. Ther.230 (1984) 455–461.Google Scholar
  67. 67.
    Seizinger, B. R., Höllt, V., and Herz, A., Effects of chronic ethanol treatment on the in vitro biosynthesis of pro-opiomelanocortin and its post-translational processing to β-endorphin in the intermediate lobe of the rat pituitary. J. Neurochem.43 (1984) 607–613.PubMedGoogle Scholar
  68. 68.
    Shuckit, M. A., Differences in plasma cortisol after ingestion of ethanol in relatives of alcoholics and controls: Preliminary results. J. clin. Psychiat.45 (1984) 374–376.Google Scholar
  69. 69.
    Triana, E., Richard, J. F., and Strokes, P. E., The relationship between endorphins and alcohol induced sub-cortical activity. Am. J. Psychiat.127 (1980) 491–493.Google Scholar
  70. 70.
    Tabakoff, B., Jaffe, R. C., and Ritzmann, R. F., Corticosterone concentrations in mice during ethanol drinking and withdrawal. J. Pharm. Pharmac.30 (1978) 371–374.Google Scholar
  71. 71.
    Vermes, I., Mulder, G. H., Smelik, P. G., and Tilders, F. J. H., Differential control of β-endorphin/β-lipotropin secretion from anterior and intermediate lobes of the rat pituitary gland in vitro. Life Sci.27 (1980) 1761–1768.CrossRefPubMedGoogle Scholar
  72. 72.
    Vermes, I., Tilders, F. J. H., and Stoof, J. C., Dopamine inhibits the release of immunoreactive β-endorphin from rat hypothalamus in vitro. Brain Res.326 (1985) 41–46.CrossRefPubMedGoogle Scholar
  73. 73.
    Wolter, H. J., Ultrastructural evidence for β-endorphin-like immunoreactivity in the nervous system of the rat duodenum. Brain Res.334 (1985) 194–199.CrossRefPubMedGoogle Scholar
  74. 74.
    Wüster, M., Schjulz, R., and Herz, A., The direction of opioid agonists towards μ−δ and ε receptors in the rat vas deferens of the mouse and the rat. Life Sci.27 (1980) 163–170.CrossRefPubMedGoogle Scholar
  75. 75.
    Zakarian, S., and Smyth, D. G., Distribution of β-endorphin related peptides in rat pituitary and brain. Biochem. J.202 (1982) 561–571.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1989

Authors and Affiliations

  • C. Gianoulakis
    • 1
  1. 1.Douglas Hospital Research Centre and Department of PsychiatryMcGill UniversityVerdunCanada

Personalised recommendations