, Volume 45, Issue 3, pp 271–283 | Cite as

Chemical ecology of bark beetles

  • J. A. Byers
Multi-Author Review Insect Chemical Ecology


The purview of chemical ecology and the recent criticisms of improper application of theory to bark beetle phenomena is briefly discussed. Seven levels of research in chemical ecology are presented as well as their relationship to research on bark beetles. The biology and chemical ecology of several pest bark beetles from North America and Europe are discussed in regard to host tree selection theories of random landing on trees or attraction to semiochemicals. The diversity and similarities of pheromone components among species are presented in relation to their biosynthesis from host tree precursors and in relation to the ecological implications of de novo or precursor syntheses. Individual variation in biosynthesis of, response to, and release of pheromones is discussed. Olfactory perception of semiochemicals at both the electrophysiological and behavioral levels is presented. Orientation to semiochemicals during walking and flying is discussed with reference to the significance of dose-response curves for determining a compound's functionality in short- or long-range communication. The regulation of attack density, termination of the aggregation, mechanisms of attack spacing, and recognition of host suitability are presented in the context of an individual's avoidance of intra- and interspecific competition. Finally, a brief summary of topics where our understanding of the chemical ecology of bark beetles and their associates is poorly known is presented.

Key words

Scolytidae semiochemical pheromone allomone kairomone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alcock, J., Natural selection and communication among bark beetles. Fla. Ent.65 (1981) 17–32.Google Scholar
  2. 2.
    Anderbrant, O., Schlyter, F., and Birgersson, G., Intraspecific competition affecting parents and offspring in the bark beetleIps typographus. Oikos45 (1985) 89–98.Google Scholar
  3. 3.
    Anderbrant, O., Schlyter, F., and Löfqvist, J., Dynamics of tree attack in the bark beetleIps typographus under semi-epidemic conditions, in: Integrated Control of Scolytid Bark Beetles. Eds T. L. Payne and H. Saarenmaa. Virginia Tech. Press, Blacksburg (1989) in press.Google Scholar
  4. 4.
    Atkins, M. D., Lipid loss with flight in the Douglas-fir beetle. Can. Ent.101 (1969) 164–165.Google Scholar
  5. 5.
    Baker, T. C. Pheromone-modulated movements of flying moths, in: Mechanisms in Insect Olfaction, pp. 39–47. Eds T. L. Payne, M. C. Birch and C. E. J. Kennedy. Clarendon Press, Oxford 1986.Google Scholar
  6. 6.
    Bakke, A., Inhibition of the response inIps typographus to the aggregation pheromone; field evaluation of verbenone and ipsenol. Z. angew. Ent.92 (1981) 172–177.Google Scholar
  7. 7.
    Bakke, A., and Kvamme, T., Kairomone response inThanasimus predators to pheromone components ofIps typographus. J. chem. Ecol.7 (1981) 305–312.Google Scholar
  8. 8.
    Bakke, A., Frøyen, P., and Skattebøl, L., Field response to a new pheromonal compound isolated fromIps typographus. Naturwissenschaften64 (1977) 98.Google Scholar
  9. 9.
    Barr, B. A., Sound production in Scolytidae (Coleoptera) with emphasis on the genusIps. Can. Ent.101 (1969) 636–672.Google Scholar
  10. 10.
    Barras, S. J., Reduction of progeny and development in the southern pine beetle following removal of symbiotic fungi. Can. Ent.105 (1973) 1295–1299.Google Scholar
  11. 11.
    Bedard, W. D., Silverstein, R. M., and Wood, D. L., Bark beetle pheromones. Science167 (1970) 1638–1639.Google Scholar
  12. 12.
    Bedard, W. D., Tilden, P. E., Wood, D. L., Silverstein, R. M., Brownlee, R. G., and Rodin, J. O., Western pine beetle: Field response to its sex pheromone and a synergistic host terpene, myrcene. Science164 (1969) 1284–1285.Google Scholar
  13. 13.
    Bedard, W. D., Tilden, P. E., Lindahl, K. Q. Jr., Wood, D. L., and Rauch, P. A., Effects of verbenone andtrans-verbenol on the response ofDendroctonus brevicomis to natural and synthetic attractant in the field. J. chem. Ecol.6 (1980) 997–1013.Google Scholar
  14. 14.
    Berryman, A. A., Dynamics of bark beetle populations: Towards a general productivity model. Envir. Ent.3 (1974) 579–585.Google Scholar
  15. 15.
    Birgersson, G., and Bergström., Volatiles released from individual spruce bark beetle entrance holes: quantitative variations during the first week of attack. J. chem. Ecol. (1989) in press.Google Scholar
  16. 16.
    Birgersson, G., Schlyter, F., Bergström, G., and Löfqvist, J., Individual variation in aggregation pheromone content of the bark beetleIps typographus. J. chem. Ecol.14 (1988) 1735–1759.Google Scholar
  17. 17.
    Birgersson, G., Schlyter, F., Löfqvist, J., and Bergström, G., Quantitative variation of pheromone components in the spruce bark beetleIps typographus from different attack phases. J. chem. Ecol.99 (1984) 1164–1193.Google Scholar
  18. 18.
    Birch, M. C., Aggregation in bark beetles, in: Chemical Ecology of Insects, pp. 331–353. Eds W. J. Bell and R. T. Cardé. Sinauer Associates. Sunderland, Mass. 1984.Google Scholar
  19. 19.
    Birch, M. C., and Wood, D. L., Mutual inhibition of the attractant pheromone response by two species ofIps (Coleoptera: Scolytidae). J. chem. Ecol.1 (1975) 101–113.Google Scholar
  20. 20.
    Birch, M. C., Light, D. M., Wood, D. L., Browne, L. E., Silverstein, R. M., Bergot, B. J., Ohloff, G., West, J. R., and Young, J. C., Pheromonal attraction and allomonal interruption ofIps pini in California by the two enantiomers of ipsdienol. J. chem. Ecol.6 (1980) 703–717.Google Scholar
  21. 21.
    Birch, M. C., Svihra, P., Paine, T. D., and Miller, J. C., Influence of chemically mediated behavior on host tree colonization by four cohabiting species of bark beetles. J. chem. Ecol.6 (1980) 395–414.Google Scholar
  22. 22.
    Borden, J. H., Aggregation pheromones, in: Bark Beetles in North American Conifers: A System for the Study of Evolutionary Biology, pp. 74–139. Eds J. B. Mitton and K. B. Sturgeon. Univ. Texas Press, Austin 1982.Google Scholar
  23. 23.
    Borden, J. H., Hunt, D. W. A., Miller, D. R., and Slessor, K. N., Orientation in forest Coleoptera: An uncertain outcome of responses by individual beetles to variable stimuli, in: Mechanisms in Insect Olfaction, pp. 97–109. Eds T. L. Payne, M. C. Birch and C. E. J. Kennedy. Clarendon Press, Oxford 1986.Google Scholar
  24. 24.
    Borden, J. H., Chong, L., McLean, J. A., Slessor, K. N., and Mori, K.,Gnathotrichus sulcatus: synergistic response to enantiomers of the aggregation pheromone sulcatol. Science192 (1976) 894–896.PubMedGoogle Scholar
  25. 25.
    Brand, J. M., and Barras, S. J., The major volatile constituents of a basidiomycete associated with the southern pine beetle. Lloydia40 (1977) 398–400.Google Scholar
  26. 26.
    Brand, J. M., Bracke, J. W., Britton, L. N., Markovetz, A. J., and Barras, J. S., Bark beetle pheromones: Production of verbenone by a mycangial fungus ofDendroctonus frontalis. J. chem. Ecol.2 (1976) 195–199.Google Scholar
  27. 27.
    Browne, L. E., Wood, D. L., Bedard, W. D., Silverstein, R. M., and West, J. R., Quantitative estimates of the Western pine beetle attractive pheromone components,exo-brevicomin, frontalin, and myrcene in nature. J. chem. Ecol.5 (1979) 397–414.Google Scholar
  28. 28.
    Byers, J. A., Effect of mating on terminating aggregation during host colonization in the bark beetle,Ips paraconfusus. J. chem. Ecol.7 (1981) 1135–1147.Google Scholar
  29. 29.
    Byers, J. A., Pheromone biosynthesis in the bark beetle,Ips paraconfusus, during feeding or exposure to vapours of host plant precursors. Insect Biochem.11 (1981) 563–569.Google Scholar
  30. 30.
    Byers, J. A., Male-specific conversion of the host plant compound, myrcene, to the pheromone, (+)-ipsdienol, in the bark beetle.Dendroctonus brevicomis. J. chem. Ecol.8 (1982) 363–371.Google Scholar
  31. 31.
    Byers, J. A., Influence of sex, maturity and host substances on pheromones in the guts of the bark beetles,Dendroctonus brevicomis andIps paraconfusus. J. Insect Physiol.29 (1983) 5–13.Google Scholar
  32. 32.
    Byers, J. A., Bark beetle conversion of a plant compound to a sexspecific inhibitor of pheromone attraction. Science220 (1983) 624–626.Google Scholar
  33. 33.
    Byers, J. A., Sex-specific responses to aggregation pheromone: Regulation of colonization density by the bark beetle,Ips paraconfusus. J. chem. Ecol.9 (1983) 129–142.Google Scholar
  34. 34.
    Byers, J. A., Nearest neighbor analysis and simulation of distribution patterns indicates an attack spacing mechanism in the bark beetle,Ips typographus (Coleoptera: Scolytidae). Envir. Ent.13 (1984) 1191–1200.Google Scholar
  35. 35.
    Byers, J. A., Interactions of pheromone component odor plumes of western pine beetle. J. chem. Ecol.13 (1987) 2143–2157.Google Scholar
  36. 36.
    Byers, J. A., Upwind flight orientation to pheromone in western pine beetle tested with rotating windvane traps. J. chem. Ecol.14 (1988) 189–198.Google Scholar
  37. 37.
    Byers, J. A., Novel diffusion-dilution method for release of semiochemicals: Testing pheromone component ratios on western pine beetle. J. chem. Ecol.14 (1988) 199–212.Google Scholar
  38. 38.
    Byers, J. A., Behavioral mechanisms involved in reducing competition in bark beetles. Holarct. Ecol. (1989) in press.Google Scholar
  39. 39.
    Byers, J. A., and Wood, D. L., Interspecific inhibition of the response of the bark beetles,Dendroctonus brevicomis andIps paraconfusus. J. chem. Ecol.6 (1980) 149–164.Google Scholar
  40. 40.
    Byers, J. A., and Wood, D. L., Interspecific effects of pheromones on the attraction of the bark beetles,Dendroctonus brevicomis andIps paraconfusus in the laboratory. J. chem. Ecol.7 (1981) 9–18.Google Scholar
  41. 41.
    Byers, J. A., and Wood, D. L., Antibiotic-induced inhibition of pheromone synthesis in a bark beetle. Science213 (1981) 763–764.Google Scholar
  42. 42.
    Byers, J. A., Anderbrant, O., and Löfqvist, J., Effective attraction radius: A method for comparing species attractants and determining densities of flying insects. J. chem. Ecol.15 (1989) 749–765.Google Scholar
  43. 43.
    Byers, J. A., Lanne, B. S., and Löfqvist, J., Host-tree unsuitability recognized by pine shoot beetles in flight. Experientia45 (1989) in press.Google Scholar
  44. 44.
    Byers, J. A., Birgersson, G., Löfqvist, J., and Bergström, G., Synergistic pheromones and monoterpenes enable aggregation and host recognition by a bark beetle,Pityogenes chalcographus. Naturwissenschaften75 (1988) 153–155.Google Scholar
  45. 45.
    Byers, J. A., Wood, D. L., Craig, J., and Hendry, L. B., Attractive and inhibitory pheromones produced in the bark beetle,Dendroctonus brevicomis, during host colonization: Regulation of inter- and intraspecific competition. J. chem. Ecol.10 (1984) 861–877.Google Scholar
  46. 46.
    Byers, J. A., Birgersson, G., Löfqvist, J., Appelgren, M., and Bergström, G., Isolation of pheromone synergists of a bark beetle,Pityogenes chalcographus, from complex insect-plant odors by fractionation and subtractive-combination bioassay. J. chem. Ecol. (submitted).Google Scholar
  47. 47.
    Byers, J. A., Lanne, B. S., Schlyter, F., Löfqvist, J., and Bergström, G., Olfactory recognition of host-tree susceptibility by pine shoot beetles. Naturwissenschaften72 (1985) 324–326.Google Scholar
  48. 48.
    Byrne, K. J., Swiger, A. A., Silverstein, R. M., Borden, J. H., and Stokkink, E., Sulcatol: population aggregation pheromone inGnathotrichus sulcatus (Coleoptera: Scolytidae). J. Insect Physiol.20 (1974) 1895–1900.PubMedGoogle Scholar
  49. 49.
    Cade, S. C., Hrutfiord, B. F., and Gara, R. I., Identification of a primary attractant forGnathotrichus sulcatus isolated from western hemlock logs. J. econ. Ent.3 (1970) 1014–1015.Google Scholar
  50. 50.
    Cardé, R. T., and Baker, T. C., Sexual communication with pheromones, in: Chemical Ecology of Insects, pp. 355–383. Eds W. J. Bell and R. T. Cardé. Sinauer Associates, Sunderland, Mass. 1984.Google Scholar
  51. 51.
    Choudhury, J. H., and Kennedy, J. S., Light versus pheromonebearing wind in the control of flight direction by bark beetles,Scolytus multistriatus. Physiol. Ent.5 (1980) 207–214.Google Scholar
  52. 52.
    Coulson, R. N., Population dynamics of bark beetles. A. Rev. Ent.24 (1979) 417–447.Google Scholar
  53. 53.
    Dickens, J. C., Behavioural and electrophysiological responses of the bark beetleIps typographus to potential pheromone components. Physiol. Ent.6 (1981) 251–261.Google Scholar
  54. 54.
    Dickens, J. C., Specificity in perception of pheromones and host odours in Coleoptera, in: Mechanisms in Insect Olfaction, pp. 253–261. Eds T. L. Payne, M. C. Birch and C. E. J. Kennedy. Clarendon Press, Oxford 1986.Google Scholar
  55. 55.
    Dickens, J. C., Payne, T. L., Ryker, L. C., and Rudinsky, J. A., Multiple acceptors for pheromonal enantiomers on single olfactory cells in the Douglas-fir beetle,Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae). J. chem. Ecol.11 (1985) 1359–1370.Google Scholar
  56. 56.
    Doskotch, R. W., Chatterji, S. K., and Peacock, J. W., Elm bark derived feeding stimulants for the smaller European elm bark beetle. Science167 (1970) 380–382.Google Scholar
  57. 57.
    Elkinton, J. S., and Wood, D. L., Feeding and boring behavior of the bark beetleIps paraconfusus (Coleoptera: Scolytidae) on the bark of a host and non-host tree species. Can. Ent.112 (1980) 797–809.Google Scholar
  58. 58.
    Elkinton, J. S., Wood, D. L., and Browne, L. E., Feeding and boring behavior of the bark beetle,Ips paraconfusus, in extracts of ponderosa pine phloem, J. chem. Ecol.7 (1981) 209–220.Google Scholar
  59. 59.
    Francke, W., and Vité, J. P., Oxygenated terpenes in pheromone systems of bark beetles. Z. angew. Ent.96 (1983) 146–156.Google Scholar
  60. 60.
    Francke, W., Sauerwein, P., Vité, J. P., and Klimetzek, D., The pheromone bouquet ofIps amitinus. Naturwissenschaften67 (1980) 147–148.Google Scholar
  61. 61.
    Francke, W., Heemann, V., Gerken, B., Renwick, J. A. A., and Vité, J. P., 2-ethyl-1-6-dioxaspiro[4,4]nonane, principal aggregation pheromone ofPityogenes chalcographus (L.). Naturwissenschaften64 (1977) 590–591.Google Scholar
  62. 62.
    Furniss, M. M., Baker, B. H., and Hosteler, B. B., Aggregation of spruce beetles (Coleoptera) to seudenol and repression of attraction by methylcyclohexenone in Alaska. Can. Ent.108 (1976) 1297–1302.Google Scholar
  63. 63.
    Gilbert, B. L., Baker, J. E., and Norris, D. M., Juglone (5-hydroxy-1,4-napthoquinone) fromCarya ovata, a deterrent to feeding byScolytus multistriatus. J. Insect Physiol.13 (1967) 1453–1459.Google Scholar
  64. 64.
    Goeden, R. D., and Norris, D. M., Attraction ofScolytus quadrispinosus (Coleoptera: Scolytidae) toCarya spp. for oviposition. Ann. ent. Soc. Am.57 (1964) 141–146.Google Scholar
  65. 65.
    Graham, K., Release by flight exercise of a chemotropic response from photopositive domination in a scolytid beetle. Nature184 (1959) 283–284.Google Scholar
  66. 66.
    Grégoire, J. C., Braekman, J. C., and Tondeur, A., Chemical communication between the larvae ofDendroctonus micans Kug. (Coleoptera, Scolytidae). Med. Chem. Agis. Comp. Insectes7 (1981) 253–257.Google Scholar
  67. 67.
    Hedden, R. L., and Gara, R. I., Spatial attack pattern of a western Washington Douglas-fir beetle population. For. Sci.22 (1976) 100–102.Google Scholar
  68. 68.
    Hodges, J. D., Elam, W. W., Watson, W. R., and Nebeker, T. E., Oleoresin characteristics and susceptibility of four southern pines to southern pine beetle (Coleoptera: Scolytidae) attacks. Can. Ent.111 (1979) 889–896.Google Scholar
  69. 69.
    Hughes, P. R., Myrcene: a precursor of pheromones inIps beetles. J. Insect Physiol.20 (1974) 1271–1275.Google Scholar
  70. 70.
    Hunt, D. W. A., Borden, J. H., Pierce, H. D. Jr., Slessor, K. N., King, G. G. S., and Csyzewska, E. K., Sex-specific production of ipsdienol and myrcenol byDendroctonus ponderosae (Coleoptera: Scolytidae) exposed to myrcene vapors. J. chem. Ecol.12 (1986) 1579–1586.Google Scholar
  71. 71.
    Hynum, B. G., and Berryman, A. A.,Dendroctonus ponderosae (Coleoptera: Scolytidae): pre-aggregation landing and gallery initiation on lodgepole pine. Can. Ent.112 (1980) 185–191.Google Scholar
  72. 72.
    Kennedy, J. S., Some current issues in orientation to odour sources, in: Mechanisms in Insect Olfaction, pp. 11–25. Eds. T. L. Payne, M. C. Birch and C. E. J. Kennedy. Clarendon Press, Oxford 1986.Google Scholar
  73. 73.
    Kinzer, G. W., Fentiman, A. F. Jr, Page, T. F., Foltz, R. L., Vité, J. P., and Pitman, G. B., Bark beetle attractants: identification, synthesis and field bioassay of a new compound isolated fromDendroctonus. Nature211 (1969) 475–476.Google Scholar
  74. 74.
    Kirkendall, L. R., The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). Zool. J. Linn. Soc.77 (1983) 293–352.Google Scholar
  75. 75.
    Klimetzek, D., and Francke, W., Relationship between the enantiomeric composition of α-pinene in host trees and the production of verbenols inIps species. Experientia36 (1980) 1343–1345.Google Scholar
  76. 76.
    Klimetzek, D., Köhler, J., Vité, J. P., and Kohnle, U., Dosage response to ethanol mediates host selection by ‘secondary’ bark beetles. Naturwissenschaften73 (1986) 270–272.Google Scholar
  77. 77.
    Krebs, C. J., Ecology. Harper and Row, New York 1972.Google Scholar
  78. 78.
    Lanier, G. N., Integration of visual stimuli, host odorants, and pheromones by bark beetles and weevils in locating and colonizing host trees, in: Herbivorous Insects: Host-Seeking Behavior and Mechanisms, pp. 161–171. Ed. S. Ahmad. Academic Press, New York 1983.Google Scholar
  79. 79.
    Lanier, G. N., Classon, A., Stewart, T., Piston, J. J., and Silverstein, R. M.,Ips pini: the basis for interpopulational differences in pheromone biology. J. chem. Ecol.6 (1980) 677–687.Google Scholar
  80. 80.
    Lanne, B. S., Schlyter, F., Byers, J. A., Löfqvist, J., Leufvén, A., Bergström, G., Van Der Pers, J. N. C., Unelius, R., Baeckström, P., and Norin, T., Differences in attraction to semiochemicals present in sympatric pine shoot beetles,Tomicus minor andT. piniperda. J. chem. Ecol.13 (1987) 1045–1067.Google Scholar
  81. 81.
    Leufvén, A., and Birgersson, G., Quantitative variation of different monoterpenes around galleries ofIps typographus (Coleoptera: Scolytidae) attacking Norway spruce. Can. J. Bot.65 (1987) 1038–1044.Google Scholar
  82. 82.
    Leufvén, A., Bergström, G., and Falsen, E., Interconversion of verbenols and verbenone by identified yeasts isolated from the spruce bark beetleIps typographus. J. chem. Ecol.10 (1984) 1349–1361.Google Scholar
  83. 83.
    Libbey, L. M., Morgan, M. E., Putnam, T. B., and Rudinsky, J. A., Isomer of antiaggregative pheromone identified from male Douglasfir beetle: 3-methylcyclohexen-1-one. J. Insect Physiol.22 (1976) 871–873.Google Scholar
  84. 84.
    Light, D. M., and Birch, M. C., Inhibition of the attractive pheromone response inIps paraconfusus by (R)-(−)-ipsdienol. Naturwissenschaften66 (1979) 159.Google Scholar
  85. 85.
    Light, D. M., and Birch, M. C., Bark beetle enantiomeric chemoreception: Greater sensitivity to allomone than pheromone. Naturwissenschaften69 (1982) 243–245.Google Scholar
  86. 86.
    Lorio, P. L. Jr, and Hodges, J. D., Oleoresin exudation pressure and relative water content of inner bark as indicators of moisture stress in loblolly pines. For. Sci.14 (1968) 392–398.Google Scholar
  87. 87.
    MacConnell, J. G., Borden, J. H., Silverstein, R. M., and Stokkink, E., Isolation and tentative identification of lineatin, a pheromone from the frass ofTrypodendron lineatum (Coleoptera: Scolytidae). J. chem. Ecol.3 (1977) 549–561.Google Scholar
  88. 88.
    Mayyasi, A. M., Coulson, R. N., Foltz, J. L., Hain, F. P., and Martin, W. C., Functional description of within-tree larval and progeny adult populations ofDendroctonus frontalis (Coleoptera: Scolytidae). Can. Ent.108 (1976) 363–372.Google Scholar
  89. 89.
    Miller, J. M., and Keen, F. P., Biology and control of the western pine beetle. U.S. Dept. Agric. Misc. Publ. No. 800.Google Scholar
  90. 90.
    Moeck, H. A., Ethanol as the primary attractant for the ambrosia beetleTrypodendron lineatum (Coleoptera: Scolytidae). Can. Ent.102 (1970) 985–995.Google Scholar
  91. 91.
    Moeck, H. A., Field test for the primary attraction of the spruce beetle. Envir. Can. For. Serv. Bi-mon. Res. Notes34 (1978) 8.Google Scholar
  92. 92.
    Moeck, H. A., Wood, D. L., and Lindahl, K. Q. Jr., Host selection behavior of bark beetles (Coleoptera: Scolytidae) attackingPinus ponderosa, with special emphasis on the western pine beetle,Dendroctonus brevicomis. J. chem. Ecol.7 (1981) 49–83.Google Scholar
  93. 93.
    Murlis, J., The structure of odour plumes, in: Mechanisms in Insect Olfaction, pp. 27–38. Eds T. L. Payne, M. C. Birch and C. E. J. Kennedy. Clarendon Press, Oxford 1986.Google Scholar
  94. 94.
    Mustaparta, H., Angst, M. E., and Lanier, G. N., Receptor discrimination of enantiomers of the aggregation pheromone ipsdienol, in two species ofIps. J. chem. Ecol.6 (1980) 689–701.Google Scholar
  95. 95.
    Mustaparta, H., Tommerås, B. Å., Baeckström, P., Bakke, J. M., and Ohloff, G., Ipsdienol-specific receptor cells in bark beetles: Structure-activity relationships of deuterium-labelled ipsdienol. J. comp. Physiol.154 (1984) 591–595.Google Scholar
  96. 96.
    Nilssen, A. C., Spatial attack pattern of the bark beetleTomicus piniperda L. (Col., Scolytidae). Norw. J. Ent.25 (1978) 171–175.Google Scholar
  97. 97.
    Norris, D. M., Role of repellents and deterrents in feeding ofScolytus multistriatus. in: Host Plant Resistance to Pests, 215–230. Ed P. A. Hedin. Am. chem. Symp. Ser. No. 63, 1977.Google Scholar
  98. 98.
    Paine, T. D., Birch, M. C., and Svihra, P., Niche breadth and resource partitioning by 4 sympatric species of bark beetles. Oecologia48 (1981) 1–6.Google Scholar
  99. 99.
    Payne, T. L., Pheromone and host odor perception in bark beetles, in: Neurotoxicology of Insecticides and Pheromones, pp. 27–57. Ed. T. Narahashi. Plenum, New York 1979.Google Scholar
  100. 100.
    Payne, T. L., and Dickens, J. C., Adaptation to determine receptor system specificity in insect olfactory communication. J. Insect Physiol.22 (1976) 1569–1572.Google Scholar
  101. 101.
    Payne, T. L., Klimetzek, D., Kohnle, U., and Mori, K., Electrophysiological and field responses ofTrypodendron-spp to enantiomers of lineatin. Z. angew. Ent.95 (1983) 272–276.Google Scholar
  102. 102.
    Payne, T. L., Richerson, J. V., Dickens, J. C., West, J. R., Mori, K., Berisford, C. W., Hedden, R. L., Vité, J. P., and Blum, M. S., Southern pine beetle: Olfactory receptor and behavior discrimination of enantiomers of the attractant pheromone frontalin. J. chem. Ecol.8 (1982) 873–881.Google Scholar
  103. 103.
    Peacock, J. W., Lincoln, C. L., Simeone, J. B., and Silverstein, R. M., Attraction ofScolytus multistriatus (Coleoptera: Scolytidae) to a virgin-female-produced pheromone in the field. Ann. ent. Soc. Am.64 (1971) 1143–1149.Google Scholar
  104. 104.
    Pearce, G. T., Gore, W. E., Silverstein, R. M., Peacock, J. W., Cuthbert, R. A., Lanier, G. N., and Simeone, J. B., Chemical attractants for the smaller European elm bark beetle,Scolytus multistriatus (Coleoptera: Scolytidae). J. chem. Ecol.1 (1975) 115–124.Google Scholar
  105. 105.
    Peschke, K., Cuticular hydrocarbons regulate mate recognition, male aggression, and female choice of the rove beetle,Aleochara curtula. J. chem. Ecol.13 (1987) 1993–2008.Google Scholar
  106. 106.
    Pitman, G. B., and Vité, J. P., Biosynthesis of methylcyclohexenone by male Douglas-fir beetle. Envir. Ent.3 (1974) 886–887.Google Scholar
  107. 107.
    Pitman, G. B., Vité, J. P., Kinzer, G. W., and Fentiman, A. F. Jr, Bark beetle attractants:trans-verbenol isolated fromDendroctonus. Nature218 (1968) 168–169.Google Scholar
  108. 108.
    Raffa, K. F., and Berryman, A. A., Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle,Dendroctonus ponderosae (Coleoptera: Scolytidae). Can. Ent.115 (1983) 723–734.Google Scholar
  109. 109.
    Renwick, J. A. A., and Vité, J. P., Systems of chemical communication inDendroctonus. Contr. Boyce Thompson Inst.24 (1970) 283–292.Google Scholar
  110. 110.
    Renwick, J. A. A., Hughes, P. R., and Krull, I. S., Selective production ofcis- andtrans-verbenol from (−)- and (+)-α-pinene by a bark beetle. Science191 (1976) 199–201.PubMedGoogle Scholar
  111. 111.
    Renwick, J. A. A., and Dickens, J. C., Control of pheromone production in the bark beetle,Ips cembrae. Physiol. Ent.4 (1979) 377–381.Google Scholar
  112. 112.
    Rudinsky, J. A., Multiple functions of the Douglas-fir beetle pheromone, 3-methyl-2-cyclohexen-1-one. Envir. Ent.2 (1973) 579–585.Google Scholar
  113. 113.
    Rudinsky, J. A., and Michael, R. R., Sound production in Scolytidae: Stridulation by femaleDendroctonus beetles. J. Insect Physiol.19 (1973) 689–705.Google Scholar
  114. 114.
    Rudinsky, J. A., and Ryker, L. C., Sound production in Scolytidae: rivalry and premating stridulation of male Douglas-fir beetle. J. Insect Physiol.22 (1976) 997–1003.Google Scholar
  115. 115.
    Rudinsky, J. A., Morgan, M. E., Libbey, L. M., and Michael, R. R., Sound production in Scolytidae: 3-methyl-2-cyclohexen-1-one released by the female Douglas-fir beetle in response to male sonic signal. Envir. Ent.2 (1973) 505–509.Google Scholar
  116. 116.
    Rudinsky, J. A., Morgan, M. E., Libbey, L. M., and Putnam, T. B., Additional components of the Douglas-fir beetle (Col., Scolytidae) aggregative pheromone and their possible utility in pest control. Z. angew. Ent.76 (1974) 65–77.Google Scholar
  117. 117.
    Ryker, L. C., Acoustic and chemical signals in the life cycle of a beetle. Sci. Am.250 (1984) 112–115, 118–123, 154.Google Scholar
  118. 118.
    Safranyil, L., and Vithayasai, C., Some characteristics of the spatial arrangement of attacks by the mountain pine beetle,Dendroctonus ponderosae (Coleoptera: Scolytidae), on lodgepole pine. Can. Ent.103 (1971) 1607–1625.Google Scholar
  119. 119.
    Schlyter, F., Birgersson, G., and Leufvén, A., Inhibition of attraction to aggregation pheromone by verbenone, ipsenol and ipsdienol: Density regulation mechanisms in the bark beetleIps typographus. J. chem. Ecol. (1989) in press.Google Scholar
  120. 120.
    Schlyter, F., Byers, J. A., and Löfqvist, J. A., Attraction to pheromone sources of different quantity, quality and spacing: Densityregulation mechanisms in the bark beetleIps typographus. J. chem. Ecol.13 (1987) 1503–1523.Google Scholar
  121. 121.
    Schlyter, F., Löfqvist, J., and Byers, J. A., Behavioural sequence in the attraction of the bark beetleIps typographus to pheromone sources. Physiol. Ent.12 (1987) 185–196.Google Scholar
  122. 122.
    Schlyter, F., Birgersson, G., Byers, J. A., Löfqvist, J., and Bergström, G., Response of spruce bark beetle,Ips typographus, to aggregation pheromone candidates. J. chem. Ecol.13 (1987) 701–716.Google Scholar
  123. 123.
    Schurig, V., and Weber, R., Use of glass and fused-silica open tubular columns for the separation of structural, configurational and optical isomers by selective complexation gas chromatography. J. Chromat.289 (1984) 321–332.Google Scholar
  124. 124.
    Shepherd, R. F., Distribution of attacks byDendroctonus ponderosae Hopk. onPinus contorta Dougl. var.latifolia Engelm. Can. Ent.97 (1965) 207–215.Google Scholar
  125. 125.
    Shrimpton, D. M., Resistance of lodgepole pine to mountain pine beetle infestation, in: Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests, pp. 64–76. Forest, Wildlife and Range Esp. Sta., Univ. Idaho, Moscow, Idaho 1978.Google Scholar
  126. 126.
    Silverstein, R. M., Rodin, J. O., and Wood, D. L., Sex attractants in frass produced by maleIps confusus in ponderosa pine. Science154 (1966) 509–510.Google Scholar
  127. 127.
    Silverstein, R. M., Rodin, J. O., and Wood, D. L., Methodology for isolation and identification of insect pheromones with reference to studies on California five-spinedIps. J. econ. Ent.60 (1967) 944–949.Google Scholar
  128. 128.
    Silverstein, R. M., Rodin, J. O., Wood, D. L., and Browne, L. E., Identification of two new terpene alcohols from frass produced byIps confusus in ponderosa pine. Tetrahedron22 (1966) 1929–1936.Google Scholar
  129. 129.
    Silverstein, R. M., Brownlee, R. G., Bellas, T. E., Wood, D. L., and Browne, L. E., Brevicomin: Principal sex attractant in the frass of the female western pine beetle. Science159 (1968) 889–891.PubMedGoogle Scholar
  130. 130.
    Slessor, K. N., King, G. G. S., Miller, D. R., Winston, M. L., and Cutforth, T. L., Determination of chirality of alcohol or latent alcohol semiochemicals in individual insects. J. chem. Ecol.11 (1985) 1659–1667.Google Scholar
  131. 131.
    Smith, R. H., The fumigant toxicity of three pine resins toDendroctonus brevicomis andD. jeffrei. J. econ. Ent.54 (1961) 365–369.Google Scholar
  132. 132.
    Smith, H., Variation in the monoterpenes ofPinus ponderosa Laws. Science143 (1964) 1337–1338.Google Scholar
  133. 133.
    Smith, R. H., Local and regional variation in the monoterpenes of ponderosa pine xylem resin. USDA For. Ser. Res. Pap. PSW-56 (1969) 1–10.Google Scholar
  134. 134.
    Stephen, F. M., and Dahlsten, D. L., The arrival sequence of the arthropod complex following attack byDendroctonus brevicomis (Coleoptera: Scolytidae) in ponderosa pine. Can. Ent.108 (1976) 283–304.Google Scholar
  135. 135.
    Sturgeon, K. B., Monoterpene variation in ponderosa pine xylem resin related to western pine beetle predation. Evolution33 (1979) 803–814.Google Scholar
  136. 136.
    Svihra, P., Paine, T. D., and Birch, M. C., Interspecific olfactory communications in southern pine beetles. Naturwissenschaften67 (1980) 518.Google Scholar
  137. 137.
    Tommerås, B. Å., Mustaparta, H., and Grégoire, J. C., Receptor cells inIps typographus andDendroctonus micans specific to pheromones of the reciprocal genus. J. chem. Ecol.10 (1984) 759–769.Google Scholar
  138. 138.
    Vanderwel, D., and Oehlschlager, A. C., Biosynthesis of pheromones and endocrine regulation of pheromone production in Coleoptera, in: Pheromone Biochemistry, pp. 175–215. Eds G. D. Prestwich and G. J. Blomquist. Academic Press, New York 1987.Google Scholar
  139. 139.
    Vité, J. P., and Gara, R. I., Volatile attractants from ponderosa pine attacked by bark beetles (Coleoptera: Scolytidae). Contr. Boyce Thompson Inst.21 (1962) 251–273.Google Scholar
  140. 140.
    Vité, J. P., and Williamson, D. L.,Thanasimus dubius: prey perception. J. Insect Physiol.16 (1970) 233–239.Google Scholar
  141. 141.
    Vité, J. P., and Wood, D. L., A study on the applicability of the measurement of oleoresin exudation pressure in determining susceptibility of second growth ponderosa pine to bark beetle infestation. Contr. Boyce Thompson Inst.21 (1961) 67–78.Google Scholar
  142. 142.
    Vité, J. P., Bakke, A., and Renwick, J. A. A., Pheromones inIps (Coleoptera: Scolytidae): Occurrence and production. Can. Ent.104 (1972) 1967–1975.Google Scholar
  143. 143.
    Vité, J. P., Hedden, R., and Mori, K.,Ips grandicollis: field response to the optically pure pheromone. Naturwissenschaften63 (1976) 43–44.PubMedGoogle Scholar
  144. 144.
    Vité, J. P., Ohloff, C., and Billings, R. F., Pheromone chirality and integrity of aggregation response in southern species of the bark beetle,Ips sp. Nature272 (1978) 817–818.Google Scholar
  145. 145.
    Vité, J. P., Pitman, G. B., Fentiman, A. F. Jr, and Kinzer, G. W., 3-Methyl-2-cyclohexen-1-ol isolated fromDendroctonus. Naturwissenschaften59 (1972) 469.Google Scholar
  146. 146.
    Wood, D. L., Selection and colonization of ponderosa pine by bark beetles, in: Insect Plant Relationships, pp. 101–117. Ed. H. F. van Emden. Blackwell Sci. Pub., London 1972.Google Scholar
  147. 147.
    Wood, D. L., The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. A. Rev. Ent.27 (1982) 411–446.Google Scholar
  148. 148.
    Wood, D. L., Akers, R. P., Owen, D. R., and Parmeter, J. R. Jr, The behaviour of bark beetles colonizing ponderosa pine, in: Insects and the Plant Surface, pp. 91–104. Eds Juniper and Southwood. Arnold Publ., London 1986.Google Scholar
  149. 149.
    Wood, D. L., Browne, L. E., Silverstein, R. M., and Rodin, J. O., Sex pheromones of bark beetles — I. Mass production, bioassay, source, and isolation of the sex pheromone ofIps confusus (LeC.). J. Insect Physiol.12 (1966) 523–536.PubMedGoogle Scholar
  150. 150.
    Wood, D. L., Stark, R. W., Silverstein, R. M., and Rodin, J. O., Unique synergistic effects produced by the principal sex attractant compounds ofIps confusus (LeConte) (Coleoptera: Scolytidae). Nature215 (1967) 206.Google Scholar
  151. 151.
    Wood, D. L., Browne, L. E., Ewing, B., Lindahl, K., Bedard, W. D., Tilden, P. E., Mori, K., Pitman, G. B., and Hughes, P. R., Western pine beetle: specificity among enantiomers of male and female components of an attractant pheromone. Science192 (1976) 896–898.PubMedGoogle Scholar
  152. 152.
    Wood, S. L., The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs, Brigham Young Univ., Provo, Utah 1982.Google Scholar

Copyright information

© Birkhäuser Verlag 1989

Authors and Affiliations

  • J. A. Byers
    • 1
  1. 1.Department of Ecology, Animal EcologyUniversity of LundLund(Sweden)

Personalised recommendations