Acta Mathematica Hungarica

, Volume 52, Issue 3–4, pp 255–263 | Cite as

Biduals of Banach algebras which are ideals in a Banach algebra

  • B. J. Tomiuk
Article
  • 24 Downloads

Keywords

Banach Algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. A. Akemann, The dual space of an operator algebra,Trans. Amer. Math. Soc. 126 (1967), 286–302.Google Scholar
  2. [2]
    F. E. Alexander, The bidual ofA *-algebras of the first kind,J. London Math. Soc.,12 (1975), 1–6.Google Scholar
  3. [3]
    R. E. Arens, The adjoint of a bilinear operation,Proc. Amer. Math. Soc.,2 (1951), 839–848.Google Scholar
  4. [4]
    P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra,Pac. J. Math.,11 (1961), 847–870.Google Scholar
  5. [5]
    J. Diximer,Les C *-algèbres et leurs représentations, Gauthier-Villars (Paris, 1968).Google Scholar
  6. [6]
    N. Dunford and J. Schwartz,Linear operators, Part I, Interscience Publishers (New York, 1958).Google Scholar
  7. [7]
    S. L. Gulick, Commutativity and ideals in the biduals of topological algebras,Pac. J. Math.,18 (1966), 121–137.Google Scholar
  8. [8]
    J. O. Hennefeld, A note on Arens products,Pac. J. Math. 26 (1968), 115–119.Google Scholar
  9. [9]
    J. O. Hennefeld, Finding a maximal subalgebra on which the two Arens products agree,Pac. J. Math.,59 (1975), 93–98.Google Scholar
  10. [10]
    N. Jacobson,Structure of rings, Colloq. Publications Amer. Math. Soc., Vol. 37 (1956).Google Scholar
  11. [11]
    M. Leinert, A contribution to Segal algebras,Manuscripta Math.,19 (1973), 297–306.Google Scholar
  12. [12]
    S. A. McKilligan, Arens regularity of certain Banach algebras which are ideals of a Banach algebra,Proc. Amer. Math. Soc.,50 (1975), 223–229.Google Scholar
  13. [13]
    B. J. Tomiuk, On some properties of Segal algebras and their multipliers,Manuscripta Math.,27 (1979), 1–18.Google Scholar
  14. [14]
    B. J. Tomiuk, Arens regularity and the algebra of double multipliers,Proc. Amer. Math. Soc.,81 (1981), 293–298.Google Scholar
  15. [15]
    P. K. Wong, The second conjugates of certain Banach algebras,Can. J. Math.,27 (1975), 1029–1035.Google Scholar

Copyright information

© Akadémiai Kiadó 1988

Authors and Affiliations

  • B. J. Tomiuk
    • 1
  1. 1.Department of MathematicsUniversity of OttawaOttawaCanada

Personalised recommendations