Skip to main content
Log in

Ion channels in the plasma membrane ofAmaranthus protoplasts: One cation and one anion channel dominate the conductance

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

This report details preliminary findings for ion channels in the plasma membrane of protoplasts derived from the cotyledons ofAmaranthus seedlings. The conductance properties of the membrane can be described almost entirely by the behavior of two types of ion channel observed as single channels in attached and detached patches. The first is a cation-selective outward rectifier, and the second a multistate anion-selective channel which, under physiological conditions, acts as an inward rectifier.

The cation channel has unit conductance of approx. 30 pS (symmetrical 100 K+) and relative permeability sequence K+>Na+>Cl (1∶0.16∶0.03); whole-cell currents activate in a time-dependent manner, and both activation and deactivation kinetics are voltage dependent. The anion channel opens for hyperpolarized membrane potentials, has a full-level conductance of approx. 200 pS and multiple subconductance states. The number of sub-conductances does not appear to be fixed. When activated the channel is open for long periods, though shuts if the membrane potential (V m ) is depolarized; at millimolar levels of [Ca2+]cyt this voltage dependency disappears. Inward current attributable to the anion channel is not observed in whole-cell recordings when MgATP (2mm) is present in the intracellular solution. By contrast the channel is active in most detached patches, whether MgATP is present or not on the cytoplasmic face of the membrane. The anion channel has a significant permeability to cations, the sequence being NO 3 >Cl>K+>Aspartate (2.04∶1∶0.18 to 0.09∶0.04). The relative permeability for K+ decreased at progressively lower conductance states. In the absence of permeant anions this channel could be mistaken for a cation inward rectifier. The anion and cation channels could serve to clampV m at a preferred value in the face of events which would otherwise perturbV m .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beilby, M.J. 1985. Potassium channels atChara plasmalemma.J. Exp. Bot. 36:228–239

    Google Scholar 

  • Bisson, M.A. 1984. Calcium effects on electrogenic pump and passive permeability of the plasma membrane ofChara corallina.J. Membrane Biol. 81:59–67

    Google Scholar 

  • Boult, M., Elliott, D.C., Findlay, G.P., Terry, B.R., Tyerman, S.D. 1989. A multi-state anion channel in the plasmalemma ofAmaranthus tricolor.In: Plant Membrane Transport: The Current Position. J. Dainty, M.I. De Michelis, E. Marre, and F. Rasi-Caldigno, editors. pp. 517–520. Elsevier, Amsterdam

    Google Scholar 

  • Brown, D.A. 1990. G-proteins and potassium currents in neurons.Annu. Rev. Physiol. 52:215–242

    Google Scholar 

  • Bush, D.S., Hedrich, R., Schroeder, J.I. Jones, R.L. 1988. Channel-mediated K flux in barley aleurone protoplasts.Planta 176:368–377

    Google Scholar 

  • Coleman, H.A. 1986. Chloride currents inChara—A patch-clamp study.J. Membrane Biol. 93:55–61

    Google Scholar 

  • Coleman, H.A., Findlay, G.P. 1985. Ion channels in the membrane ofChara inflata.J. Membrane Biol. 83:109–118

    Google Scholar 

  • Cook, D.L., Hales, C.N. 1984. Intracellular ATP directly blocks K+ channels in pancreatic B-cells.Nature 311:271–273

    Google Scholar 

  • Coster, H.G. 1965. A quantitative analysis of the voltage-current relationships of fixed charge membranes and the associated property of “punch-through”Biophys. J. 5:669–686

    Google Scholar 

  • Coster, H.G.L. 1969. The role of pH in the punch-through effect in the electrical characteristics ofChara australis.Aust. J. Biol. Sci. 22:365–374

    Google Scholar 

  • Elliott, D.C. 1983. Inhibition of cytokinin-regulated responses by calmodulin-binding compounds.Plant Physiol. 72:215–218

    Google Scholar 

  • Elliott, D.C., Yao, Y.G. 1989. Cytokinin and fusicoccin effects on calcium transport inAmaranthus protoplasts.Plant Sci. 65:243–252

    Google Scholar 

  • Fairley, K., Laver, D., Walker, N.A. 1991. Whole-cell and single-channel currents across the plasmalemma of corn shoot suspension cells.J. Membrane Biol. (in press)

  • Findlay, G.P., Coleman, H.A. 1983. Potassium channels in the membrane ofHydrodictyon africanum.J. Membrane Biol. 75:241–251

    Google Scholar 

  • Fox, J.A. 1987. Ion channel subconductance states.J. Membrane Biol. 97:1–8

    Google Scholar 

  • Geletyuk, V.I., Kazachenko, V.N. 1985. Single Cl channels in molluscan neurons: Multiplicity of the conductance states.J. Membrane Biol. 86:9–15

    Google Scholar 

  • Geletyuk, V.I., Kazachenko, V.N. 1989. Single potential-dependent K+ channels and their oligomers in molluscan glial cells.Biochim. Biophys. Acta 981:343–350

    Google Scholar 

  • Hamill, O.P., Marty, A., Neyer, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. 391:85–100

    Google Scholar 

  • Hanke, W., Methfessel, C., Wilmsen, U., Boheim, G. 1984., Ion channel reconstitution into lipid bilayer membranes on glass patch pipettes.Bioelectrochem. Bioenergetics 12:329–339

    Google Scholar 

  • Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland

    Google Scholar 

  • Kataev, A.A., Zherelova, O.M., Berestovsky, G.N. 1984. Ca2+-induced activation and irreversible inactivation, of chloride channels in the perfused plasmalemma ofNitellopsis obtusa.Gen. Physiol. Biophys. 3:447–462

    Google Scholar 

  • Keller, B.U., Hedrich, R., Raschke, K. 1989. Voltage-dependent anion channels in the plasma membrane of guard cells.Nature 341:450–453

    Google Scholar 

  • Ketchum, K.A., Shrier, A., Poole, R.J. 1989. Characterisation of potassium-dependent currents in protoplasts of corn suspension cells.Plant Physiol. 89:1184–1192

    Google Scholar 

  • Kume, H., Takai, A., Tokumo, H., Tomita, T. 1989. Regulation of Ca2+-dependent K+-channel activity in tracheal myocytes by phosphorylation.Nature 341:152–154

    Google Scholar 

  • Lacerda, A.E., Rampe, D., Brown, A.M. 1988. Effects of protein kinase C activation on cardiac Ca2+ channels.Nature 335:249–251

    Google Scholar 

  • Levitan, I.B. 1985. Phosphorylation of ion channels.J. Membrane Biol. 87:177–190

    Google Scholar 

  • Lunevsky, V.Z., Zherelova, O.M., Vostrikov, I.Y., Berestovsky, G.N. 1983. Excitation ofCharaceae cell membranes as a result of activation of calcium and chloride channels.J. Membrane Biol. 72:43–58

    Google Scholar 

  • Lynch, E.C., Blake, M.S., Gotschlich, E.C., Mauro, A. 1984. Studies of porins: Spontaneously transferred from whole cells and reconstituted from purified proteins ofNeisseria gonorrhoeae andNeisseria meningitidis.Biophys. J. 45:104–107

    Google Scholar 

  • Moran, N., Satter, R.L. 1989. K+ channels in plasmalemma of motor cells ofSamanea saman.In: Plant Membrane Transport: The Current Position. J. Dainty, M.I. De Michelis, E. Marre, and F. Rasi Caldogno, editors. pp. 529–530. Elsevier, Amsterdam

    Google Scholar 

  • Noma, A. 1983. ATP-regulated K channels in cardiac muscle.Nature 305:147–148

    Google Scholar 

  • Ribalet, B., Ciani, S., Eddlestone, G.T. 1989. ATP-mediates both activation and inhibition of K(ATP) channel activity via cAMP-dependent protein kinase in insulin-secreting cell lines.J. Gen. Physiol. 94:693–717

    Google Scholar 

  • Rudy, B. 1988. Diversity and ubiquity of K channels.Neuroscience 25:729–749

    Google Scholar 

  • Schauf, C.L., Wilson, K.J. 1987. Properties of single K+ and Cl channels inAsclepias tuberosa protoplasts.Plant Physiol. 85:413–418

    Google Scholar 

  • Schroeder, J.I. 1988. K+ transport properties of K+ channels in the plasma membrane ofVicia faba guard cells.J. Gen. Physiol. 92:667–683

    Google Scholar 

  • Schroeder, J.I., Hagiwara, S. 1989. Cytosolic calcium regulates ion channels in the plasma membrane ofVicia faba guard cells.Nature 338:427–430

    Google Scholar 

  • Schroeder, J.I., Raschke, K., Neher, E. 1987. Voltage dependence of K+ channels in guard cell protoplasts.Proc. Natl. Acad. Sci. USA 84:4108–4112

    Google Scholar 

  • Shearman, M.S., Sekiguchi, K., Nishizuka, Y. 1989. Modulation of ion channel activity—a key function of the protein kinase-C enzyme family.Pharmacol. Rev. 41:211–237

    Google Scholar 

  • Shiina, T., Tazawa, M. 1987. Ca2+-activated Cl channel in plasmalemma ofNitellopsis obtusa.J. Membrane Biol. 99:137–146

    Google Scholar 

  • Sokolik, A.I., Yurin, V.M. 1986. Potassium channels in plasmalemma ofNitella cells at rest.J. Membrane Biol. 89:9–22

    Google Scholar 

  • Stoeckel, H., Takeda, K. 1989. Calcium-activated voltage-dependent non-selective cation currents in endosperm plasma membrane from higher plants.Proc R. Soc. London B. 237:213–231

    Google Scholar 

  • Tester, M. 1990. Plant ion channels: Whole-cell and single-channel studies.New Phytol. 114:305–340

    Google Scholar 

  • Tyerman, S.D., Findlay, G.P. 1989. Current-voltage curves of single Cl channels which coexist with two types of K+ channel in the tonoplast ofChara corallina.J. Exp. Bot. 40:105–118

    Google Scholar 

  • Tyerman, S.D., Findlay, G.P., Paterson, G.J. 1986a. Inward membrane current inChara inflata: II. Effects of pH, Cl-channel blockers and NH +4 , and significance for the hyperpolarized state.J. Membrane Biol. 89:153–161

    Google Scholar 

  • Tyerman, S.D., Findlay, G.P., Paterson, G.J. 1986b. Inward membrane current inChara inflata: I. A voltage- and time-dependent Cl component.J. Membrane Biol. 89:139–152

    Google Scholar 

  • Tyerman, S.D., Findlay, G.P., Terry, B.R. 1989. Behaviour of K+ and Cl channels in the cytoplasmic drop membrane ofChara corallina using a transient detection method of analysing single-channel recordings.In: Plant Membrane Transport. J. Dainty, M.I. De Michelis, E. Marre, and F. Rasi-Caldogno, editors. pp. 173–178. Elsevier, Amsterdam

    Google Scholar 

  • Weik, R., Neumcke, B. 1989. ATP-sensitive potassium channels in adult mouse skeletal muscle: Characterization of the ATP-binding site.J. Membrane Biol. 110:217–226

    Google Scholar 

  • Williams, D.L., Jr., Katz, G.-M., Roy-Contancin, L., Reuben, J.P. 1988. Guanosine 5′-monophosphate modulates gating of high-conductance Ca2+-activated K+ channels in vascular smooth muscle cells.Proc. Natl. Acad. Sci. USA 85:9360–9364

    Google Scholar 

  • Zherelova, O.M. 1989. Activation of chloride channels in the plasmalemma ofNitella syncarpa by inositol 1,4,5-triphosphate.FEBS Lett. 249:105–107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terry, B.R., Tyerman, S.D. & Findlay, G.P. Ion channels in the plasma membrane ofAmaranthus protoplasts: One cation and one anion channel dominate the conductance. J. Membrain Biol. 121, 223–236 (1991). https://doi.org/10.1007/BF01951556

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01951556

Key Words

Navigation