Skip to main content
Log in

Evidence that superoxide radicals are involved in the hemolytic mechanism of phenylhydrazine

  • Specialia
  • Haematologica, Immunologica
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Phenylhydrazine produces in the red blood cell the same effect as the enzymic system xanthine oxidase-xanthine, a superoxide radical generator system. Both effects are inhibited by the enzyme superoxide dismutase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. F. Gottleib, Ann. Rev. Microbiol.25, 111 (1971).

    Article  Google Scholar 

  2. N. Haugaard, Physiol. Rev.48, 311 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. B. Moore and R. S. Williams, Biochem. J.5, 181 (1911).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. E. M. Gregory and I. Fridovich, J. Bacteriol.114, 543 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. R. C. Allen, S. J. Yevich, R. W. Orth and R. H. Steele, Biochem. biophys. Res. Comm.60, 909 (1974).

    Article  CAS  PubMed  Google Scholar 

  6. F. W. Heaton and N. Uri, J. Lipid Res.2, 152 (1961).

    Article  CAS  PubMed  Google Scholar 

  7. J. A. Fee and H. D. Teitelbaum, Biochem. biophys. Res. Comm.49, 150 (1972).

    Article  CAS  PubMed  Google Scholar 

  8. T. C. Pederson and S. D. Aust, Biochem. biophys. Res. Comm.48, 789 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. T. Noguchi and M. Nakano, Biochim. biophys. Acta368, 446 (1974).

    Article  CAS  PubMed  Google Scholar 

  10. B. Goldberg and A. Stern, J. biol. Chem.250, 2401 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. J. M. McCord and I. Fridovich, J. biol. Chem.244, 6049 (1969).

    Article  CAS  PubMed  Google Scholar 

  12. H. P. Misra and I. Fridovich, J. biol. Chem.247, 3170 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. D. L. Drabkin and J. M. Austin, J. biol. Chem.112, 52 (1935).

    Article  Google Scholar 

  14. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. biol. Chem.193, 265 (1951).

    Article  CAS  PubMed  Google Scholar 

  15. H. Sies, Angew. Chem., int. Ed.13, 706 (1974).

    Article  CAS  Google Scholar 

  16. B. L. Horecker and L. A. Heppel, J. biol. Chem.178, 683 (1949).

    Article  CAS  PubMed  Google Scholar 

  17. I. Fridovich and P. Handler, J. biol. Chem.236, 1836 (1961).

    Article  CAS  PubMed  Google Scholar 

  18. I. Fridovich and P. Handler, J. biol. Chem.237, 916 (1962).

    Article  CAS  PubMed  Google Scholar 

  19. J. M. McCord and I. Fridovich, J. biol. Chem.243, 5753 (1968).

    Article  CAS  PubMed  Google Scholar 

  20. R. M. Arneson, Archs Biochem. Biophys.136, 352 (1970).

    Article  CAS  Google Scholar 

  21. H. P. Misra and I. Fridovich, J. biol. Chem.247, 6960 (1972).

    Article  CAS  PubMed  Google Scholar 

  22. C. Beauchamp and I. Fridovich, J. biol. Chem.245, 4641 (1970).

    Article  CAS  PubMed  Google Scholar 

  23. A. Valenzuela and H. E. Ríos, unpublished results.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by grants Nos. 1045 and 3243 of Oficina Técnica de Desarrollo Científico y Creación Artística de la Universidad de Chile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valenzuela, A., Ríos, H. & Neiman, G. Evidence that superoxide radicals are involved in the hemolytic mechanism of phenylhydrazine. Experientia 33, 962–963 (1977). https://doi.org/10.1007/BF01951306

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01951306

Keywords

Navigation