Acta Mathematica Hungarica

, Volume 49, Issue 3–4, pp 441–453 | Cite as

Oscillatory properties of arithmetical functions. II

  • J. Kaczorowski
  • J. Pintz


Arithmetical Function Oscillatory Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Grosswald, Sur une propriété des racines complexes des fonctionsL(s, χ),C. R. Acad. Sci. Paris,260 (1965), 4299–4302.Google Scholar
  2. [2]
    A. E. Ingham, A note on the distribution of primes,Acta Arith.,1 (1936), 201–211.Google Scholar
  3. [3]
    J. Kaczorowski, On sign-changes in the remainder-term of the prime number formula I–II,Acta Arith.,44 (1984), 365–377 and to appearibid.Google Scholar
  4. [4]
    J. Kaczorowski, Some remarks on factorization in algebraic number fields,Acta Arith.,43 (1983), 53–68.Google Scholar
  5. [5]
    J. Kaczorowski and J. Pintz, Oscillatory properties of arithmetical functions,Acta Math. Hungar.,48 (1986).Google Scholar
  6. [6]
    W. Narkiewicz,Elemenatry and analytic theory of algebraic numbers (Warszawa, 1974).Google Scholar
  7. [7]
    S. Saks and A. Zygmund,Analytic functions (Warszawa-Wrocław, 1952).Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • J. Kaczorowski
    • 1
  • J. Pintz
    • 2
  1. 1.Institute of MathematicsA Mickiewicz UniversityPoznanToland
  2. 2.Mathematical Institute of the Hungarian Academy of SciencesBudapest

Personalised recommendations