Acta Mathematica Hungarica

, Volume 49, Issue 3–4, pp 365–376 | Cite as

Decomposition of linear singularly perturbed systems

  • V. A. Sobolev
Article
  • 27 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    В. В. Стрыгин, В. А. Соболев, Влияние геометрических и кинетических параметров и диссипацин энергии наустойчивостъ ориентации спутников с двойным вращением,Космические исслебования,3 (1976), 366–371.Google Scholar
  2. [2]
    В. А. Соболев, В. В. Стрыгин, О допустимости перехода к прецессионным уравнениям гироскопических систем,Извесмия АН СССР, МТТ,5 (1978), 10–17.Google Scholar
  3. [3]
    P. V. Kokotovic, R. E. O'Malley, Jr., and P. Sannuti, Singular perturbations and order reduction in control theory — an overview,Automatica J. IFAC,12 (1976), 123–132.CrossRefGoogle Scholar
  4. [4]
    R. E. O'Malley, Jr.,Singular perturbations and optimal control, Lecture Notes in Math. 680, Springer-Verlag, (Berlin 1978), pp. 170–218.Google Scholar
  5. [5]
    V. Dragan and A. Halanay,Uniform asymptotic expressions for the fundamental matrix of singularly perturbed linear systems and applications, Lecture Notes in Math., 1985, Springer-Verlag (Berlin, 1983), pp. 215–245.Google Scholar
  6. [6]
    А. Б. Васильева, М. Г. Дмитриев, Сингулярные возмущения в задачах оптимального управления,Имоди науки и мехники ВИНИТИ, Мамемампиеский анализ,20 (1982), 3–77.Google Scholar
  7. [7]
    R. E. O'Malley, Jr.,Slow/fast decoupling for linear boundary value problems, Lecture Notes in Math. 1985, Springer-Verlag (Berlin, 1983), pp. 248–266.Google Scholar
  8. [8]
    P. A. Ioannou and P. V. Kokotovic,Adaptive systems with reduced models, Lecture Notes in Control and Inform. Sciences, 47, Springer-Verlag (Berlin, 1983).Google Scholar
  9. [9]
    P. V. Kokotovic, A Riccati equation for block diagonalization of ill-conditioned systems,IEEE Trans. on Automatic Control, AC-20 (1975), 812–814.CrossRefGoogle Scholar
  10. [10]
    K. W. Chang, Singular perturbations of a general boundary value problem,SIAM J. Math. Anal.,3 (1972), 520–526.CrossRefGoogle Scholar
  11. [11]
    Я. С. Барис, В. И. Фодчук, Исследование ограниченных решений линейных нерегулярно бозмушенных цицтем методом интегпалъхых многоогпазий, Укпаинцкий, математичецкий жупнал,21 (1969), 291–304.Google Scholar
  12. [12]
    B. Porter, Singular perturbation methods in the design of stabilizing feedback controllers for multivariable systems,Int. J. Control,20 (1974), 689–692.Google Scholar
  13. [13]
    R. R. Wilde and P. V. Kokotovic, A dichotomy in linear control theory,IEEE Trans. on Automatic Control, AC-18 (1973), 616–626.CrossRefGoogle Scholar
  14. [14]
    A. Halanay, An invariant surface for some linear singularly perturbed systems with time lag,J. Diff. Eqs. 7 (1966), 33–46.CrossRefGoogle Scholar
  15. [15]
    A. Halanay,Differential equations. Stability, oscillations, time lag, Acad. Press, 1966.Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • V. A. Sobolev
    • 1
  1. 1.Department of Differential EquationsKuibyshev State UniversityKuibyshevUSSR

Personalised recommendations