Acta Mathematica Hungarica

, Volume 54, Issue 1–2, pp 39–49 | Cite as

Minimax theorems for interval spaces

  • J. Kindler
  • R. Trost


Minimax Theorem Interval Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Brézis, L. Nirenberg and G. Stampacchia, A remark on Ky Fan's minimax principle,Boll. U.M.I.,6 (1972), 293–300.Google Scholar
  2. [2]
    B. C. Cuóng, Some remarks on minimax theorems,Acta Math. Vietnam.,1 (1976), 67–74.Google Scholar
  3. [3]
    K. Fan, Minimax theorems,Proc. Nat. Acad. Sci.,39 (1953), 42–47.Google Scholar
  4. [4]
    M. A. Geraghty and B.-L. Lin, Topological minimax theorems,Proc. Amer. Math. Soc.,91 (1984), 377–380.Google Scholar
  5. [5]
    I. Joó, A simple proof for von Neumann's minimax theorem,Acta Sci. Math.,42 (1980), 91–94.Google Scholar
  6. [6]
    I. Joó, Note on my paper “A simple proof for von Neumann's minimax theorem”,Acta Math. Hung.,44 (1984), 363–365.Google Scholar
  7. [7]
    I. Joó and L. L. Stachó, A note on Ky Fan's minimax theorem,Acta Math. Acad. Sci. Hungar.,39 (1982), 401–407.CrossRefGoogle Scholar
  8. [8]
    J. Kindler, Über Spiele auf konvexen Mengen,OR-Verfahren,26 (1977), 695–704.Google Scholar
  9. [9]
    J. Kindler, Schwach definite Spiele,Math. Operationsforsch. Statist., Ser. Optimization,8 (1977), 199–205.Google Scholar
  10. [10]
    V. Komornik, Minimax theorems for upper semicontinuous functions,Acta Math. Acad. Sci. Hungar., 40 (1982), 159–163.CrossRefGoogle Scholar
  11. [11]
    J. v. Neumann, Zur Theorie der Gesellschaftsspiele,Math. Ann.,100 (1928), 295–320.CrossRefGoogle Scholar
  12. [12]
    M. Sion, On general minimax theorems,Pac. J. Math.,8 (1958), 171–176.Google Scholar
  13. [13]
    L. L. Stachó, Minimax theorems beyond topological vector spaces,Acta Sci. Math.,42 (1980), 157–164.Google Scholar
  14. [14]
    A. Stefânescu, A general min-max theorem,Optimization,16 (1985), 497–504.Google Scholar
  15. [15]
    F. Terkelsen, Some minimax theorems,Math. Scand.,31 (1972), 405–413.Google Scholar
  16. [16]
    R. Trost,Minimaxtheoreme und Intervallräume, Master Thesis, TH Darmstadt, 1984.Google Scholar
  17. [17]
    H. Tuy, On a general minimax theorem.Soviet Math. Dokl.,15 (1974), 1689–1693.Google Scholar
  18. [18]
    H. Tuy, On the general minimax theorem,Colloqu. Math.,33 (1975), 145–158.Google Scholar
  19. [19]
    A. Wald, Generalization of a theorem by v. Neumann concerning zero sum two person games,Ann. Math.,46 (1945), 281–286.Google Scholar
  20. [20]
    A. Wald,Statistical decision functions, Second ed. Chelsea (New York, 1971).Google Scholar
  21. [21]
    S. Willard,General topology, Addison-Wesley (Reading, Mass.—London, 1970).Google Scholar
  22. [22]
    Wu Wen-Tsün, A remark on the fundamental theorem in the theory of games,Sci. Rec., New Ser.,3 (1959), 229–233.Google Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • J. Kindler
    • 1
  • R. Trost
    • 2
  1. 1.Technische hochschule darmstadtDarmstadt
  2. 2.Universität augsburgAugsburg

Personalised recommendations