Acta Mathematica Hungarica

, Volume 54, Issue 1–2, pp 39–49 | Cite as

Minimax theorems for interval spaces

  • J. Kindler
  • R. Trost


Minimax Theorem Interval Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Brézis, L. Nirenberg and G. Stampacchia, A remark on Ky Fan's minimax principle,Boll. U.M.I.,6 (1972), 293–300.Google Scholar
  2. [2]
    B. C. Cuóng, Some remarks on minimax theorems,Acta Math. Vietnam.,1 (1976), 67–74.Google Scholar
  3. [3]
    K. Fan, Minimax theorems,Proc. Nat. Acad. Sci.,39 (1953), 42–47.Google Scholar
  4. [4]
    M. A. Geraghty and B.-L. Lin, Topological minimax theorems,Proc. Amer. Math. Soc.,91 (1984), 377–380.Google Scholar
  5. [5]
    I. Joó, A simple proof for von Neumann's minimax theorem,Acta Sci. Math.,42 (1980), 91–94.Google Scholar
  6. [6]
    I. Joó, Note on my paper “A simple proof for von Neumann's minimax theorem”,Acta Math. Hung.,44 (1984), 363–365.Google Scholar
  7. [7]
    I. Joó and L. L. Stachó, A note on Ky Fan's minimax theorem,Acta Math. Acad. Sci. Hungar.,39 (1982), 401–407.CrossRefGoogle Scholar
  8. [8]
    J. Kindler, Über Spiele auf konvexen Mengen,OR-Verfahren,26 (1977), 695–704.Google Scholar
  9. [9]
    J. Kindler, Schwach definite Spiele,Math. Operationsforsch. Statist., Ser. Optimization,8 (1977), 199–205.Google Scholar
  10. [10]
    V. Komornik, Minimax theorems for upper semicontinuous functions,Acta Math. Acad. Sci. Hungar., 40 (1982), 159–163.CrossRefGoogle Scholar
  11. [11]
    J. v. Neumann, Zur Theorie der Gesellschaftsspiele,Math. Ann.,100 (1928), 295–320.CrossRefGoogle Scholar
  12. [12]
    M. Sion, On general minimax theorems,Pac. J. Math.,8 (1958), 171–176.Google Scholar
  13. [13]
    L. L. Stachó, Minimax theorems beyond topological vector spaces,Acta Sci. Math.,42 (1980), 157–164.Google Scholar
  14. [14]
    A. Stefânescu, A general min-max theorem,Optimization,16 (1985), 497–504.Google Scholar
  15. [15]
    F. Terkelsen, Some minimax theorems,Math. Scand.,31 (1972), 405–413.Google Scholar
  16. [16]
    R. Trost,Minimaxtheoreme und Intervallräume, Master Thesis, TH Darmstadt, 1984.Google Scholar
  17. [17]
    H. Tuy, On a general minimax theorem.Soviet Math. Dokl.,15 (1974), 1689–1693.Google Scholar
  18. [18]
    H. Tuy, On the general minimax theorem,Colloqu. Math.,33 (1975), 145–158.Google Scholar
  19. [19]
    A. Wald, Generalization of a theorem by v. Neumann concerning zero sum two person games,Ann. Math.,46 (1945), 281–286.Google Scholar
  20. [20]
    A. Wald,Statistical decision functions, Second ed. Chelsea (New York, 1971).Google Scholar
  21. [21]
    S. Willard,General topology, Addison-Wesley (Reading, Mass.—London, 1970).Google Scholar
  22. [22]
    Wu Wen-Tsün, A remark on the fundamental theorem in the theory of games,Sci. Rec., New Ser.,3 (1959), 229–233.Google Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • J. Kindler
    • 1
  • R. Trost
    • 2
  1. 1.Technische hochschule darmstadtDarmstadt
  2. 2.Universität augsburgAugsburg

Personalised recommendations