Advertisement

Acta Mathematica Hungarica

, Volume 44, Issue 3–4, pp 335–338 | Cite as

A note on the distribution of primes in short intervals

  • J. Pintz
Article

Keywords

Short Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Cramér, Ein Mittelwertsatz in der Primzahltheorie,Math. Z.,12 (1922), 147–153.Google Scholar
  2. [2]
    W. B. Jurkat, On the Mertens conjecture and related general Ω-theorems,Proc. Symp. Pure Math. 24 (Providence, Rhode Island) pp. 147–158.Google Scholar
  3. [3]
    S. Knapowski, Contributions to the theory of distribution of prime numbers in arithmetical progressions I,Acta Arith.,6 (1961), 415–434.Google Scholar
  4. [4]
    H. von Koch, Sur la distribution des nombres premiers,Acta Math.,24 (1901), 159–182.Google Scholar
  5. [5]
    J. E. Littlewood, Sur la distribution des nombres premiers,C. R. Acad. Sci. Paris,158 (1914), 1869–1872.Google Scholar
  6. [6]
    J. Pintz, On the remainder term of the prime number formula VI. Ineffective mean value theorems,Studia Sci. Math. Hungar.,15 (1980), 225–230.Google Scholar
  7. [7]
    J. Pintz, On the mean value of the remainder term of the prime number formula,Banach Center Publications, to appear.Google Scholar

Copyright information

© Akadémiai Kiadó 1984

Authors and Affiliations

  • J. Pintz
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations