, Volume 45, Issue 11–12, pp 1070–1078 | Cite as

Mixed substrates in environmental biotechnology

  • G. Hamer
  • Th. Egli
  • M. Snozzi
Multi-Author Review


The scope of environmental biotechnology is defined and four examples of recent research in environmental biotechnology involving various types of mixed substrates are discussed in detail and their probable impacts assessed. The four examples are: multiple carbon energy substrate (pollutant) biodegradation by both mono and mixed cultures, the biodegradation of whole microbial cells, the biodegradation of single compounds satisfying dual physiological requirements, i.e., mixed carbon and mineral nutrient sources, and simultaneous nitrification and denitrification.

Key words

Microbes environment biotechnology process treatment biodegradation mixed substrates pollutants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aebi, F., Eberli, W., Mörgeli, B., and von Rohr, Ph. R., Klärschlamm. Gas-Wasser-Abwasser67 (1987) 102–110.Google Scholar
  2. 2.
    Al-Awadhi, N., The characterization and physiology of some thermotolerant and thermophilic solvent-utilizing bacteria. Doc. Diss. ETHZ No. 8810 (1989).Google Scholar
  3. 3.
    Bitzi, U., Abbau organischer Lösungsmittel mit bakteriellen Misch- und Reinkulturen. Doc. Diss. ETHZ No. 8118 (1986).Google Scholar
  4. 4.
    Cripps, R. E., and Noble, A. S., The metabolism of nitrilotriacetate by a pseudomonad. Biochem.J. 136 (1973) 1059–1068.Google Scholar
  5. 5.
    Dalton, H., Ammonia oxidation by the methane oxidising bacteriumMethylococcus capsulatus strain bath. Archs Microbiol.114 (1977) 273–279.Google Scholar
  6. 6.
    Drozd, J. W., Bailey, M. L., and Godley, A., Oxidation of ammonia by methane-oxidizing bacteria. Proc. Soc. gen. Microbiol.4 (1976) 26.Google Scholar
  7. 7.
    Egli, Th. (An)aerobic breakdown of chelating agents used in household detergents. Microbiol. Sci.5 (1988), 36–41.Google Scholar
  8. 8.
    Egli, Th., Bosshard, Ch., and Hamer, G., Simultaneous utilization of methanol-glucose mixtures byHansenula polymorpha in chemostat: influence of dilution rate and mixture composition on utilization pattern. Biotechnol. Bioeng.28 (1986) 1735–1741.Google Scholar
  9. 9.
    Egli, Th., Weilenmann, H.-U., El-Banna, T., and Auling, G., Gramnegative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil. Syst. appl. Microbiol.10 (1988) 297–305.Google Scholar
  10. 10.
    Gottschal, J. C., de Vries, S., and Kuenen, J. G., Competition between the facultatively chemolithotrophiccThiobacillus A2, an obligately chemolithotrophicThiobacillus and a heterotrophicSpirillum for inorganic and organic substrates. Archs Microbiol.121 (1979) 241–249.Google Scholar
  11. 11.
    Hamer, G., A biotechnological approach to the treatment of wastewater from petrochemicals manufacture. Instn chem. Engrs Symp. Ser.77 (1983) 87–101.Google Scholar
  12. 12.
    Hamer, G., and Zwiefelhofer, H. P., Aerobic thermophilic hygienization—a supplement to anaerobic mesophilic waste sludge digestion. Chem. Engng Res. Des.64 (1986) 417–424.Google Scholar
  13. 13.
    Humphrey, A. E., Moreira, A., Armiger, W., and Zabriskie, D., Production of single cell protein from cellulose wastes. Biotechnol. Bioeng. Symp.7 (1977) 45–64.Google Scholar
  14. 14.
    Hutton, W. E., and ZoBell, C. E., Production of nitrite from ammonia by methane-oxidizing bacteria. J. Bact.65 (1949) 216–219.Google Scholar
  15. 15.
    Leisinger, Th., Cook, A. M., Hütter, R., and Nüesch, J. (Eds) Microbial Degradation of Xenobiotic and Recalcitrant compounds. Academic Press, London 1981.Google Scholar
  16. 16.
    Linton, J. D., and Stephenson, R. J., A preliminary study on growth yields in relation to the carbon and energy content of varous organic growth substrates. FEMS Microbiol. Lett.3 (1978) 95–98.Google Scholar
  17. 17.
    Mason, C. A., Microbial death, lysis and ‘cryptic’ growth: fundamental and applied aspects. Doc. Diss. ETHZ No. 8150 (1986).Google Scholar
  18. 18.
    Monod, J., Recherches sur la croissance des cultures bactériennes. Hermann, Paris 1942.Google Scholar
  19. 19.
    O'Neill, J. G., and Wilkinson, J. F., Oxidation of ammonia by methane-oxidizing bacteria and the effects of ammonia on methane oxidation. J. gen. Microbiol.100 (1977) 407–412.Google Scholar
  20. 20.
    Prochazka, G. J., Payne, W. J., and Mayberry, W. R., Clorific contents of microorganisms. Biotechnol. Bioeng.15 (1973) 1006–1011.Google Scholar
  21. 21.
    Robertson, L. A., and Kuenen, J. F.,Thiospaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. J. gen. Microbiol.129 (1983) 2847–2855.Google Scholar
  22. 22.
    Robertson, L. A., and Kuenen, J. F., Aerobic denitrification: a controversy revived. Archs Microbiol.139 (1984) 351–354.Google Scholar
  23. 23.
    Schneider, R. P., The NTA-monooxygenase fromPseudomonas sp. ATCC 29600. Doc. Diss. ETHZ No. 8824 (1989).Google Scholar
  24. 24.
    Senn, H. P., Kinetik und Regulation des Zuckerabbaus vonEscherichia coli ML 30 bei tiefen Zuckerkonzentrationen. Doc. Diss. ETHZ No. 8831 (1989).Google Scholar
  25. 25.
    Stumm-Zollinger, E., Substrate utilization in heterogeneous bacterial communities. J. Wat. Pollut. Control Fed.40 (1968) R213-R229.Google Scholar
  26. 26.
    Wehrli, E., and Egli, Th., Morphology of nitrilotriacetate-utilizing bacteria. Syst appl. Microbiol.10 (1986) 306–312.Google Scholar
  27. 27.
    Wilkinson, T. G., Interactions in a mixed bacterial population growing on methane in continuous culture. Doc. Diss. Univ. London (1972).Google Scholar
  28. 28.
    Wilkinson, T. G., An environmental programm for offshore oil operations. Chem. Indust. (1982) 115–123.Google Scholar
  29. 29.
    Wilkinson, T. G., and Hamer, G., The microbioal oxidation of mixtures of methanol, phenol, acetone and isopropanol with reference to effluent purification. J. chem. Technol. Biotechnol.29 (1979) 56–67.Google Scholar
  30. 30.
    Wilkinson, T. G., Topiwala, H. H., and Hamer, G., Interactions in a mixed bacterial population growing on methane in continuous culture. Biotechnol. Bioeng.16 (1974) 41–59.Google Scholar
  31. 31.
    Zlokarnik, M., Bioengineering aspects of aerobic waste water purification. Ger. Chem. Engng.6 (1983) 183–197.Google Scholar

Copyright information

© Birkhäuser Verlag 1989

Authors and Affiliations

  • G. Hamer
    • 1
    • 2
  • Th. Egli
    • 1
    • 2
  • M. Snozzi
    • 1
    • 2
  1. 1.Institut für Gewässerschutz und WassertechnologieEidgenössische Technische HochschuleDübendorfSwitzerland
  2. 2.Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und GewässerschutzDübendorfSwitzerland

Personalised recommendations