Experientia

, Volume 45, Issue 11–12, pp 1041–1047 | Cite as

Determination of oxygen gradients in single Ca-alginate beads by means of oxygen-microelectrodes

  • J. Beunink
  • H. Baumgärtl
  • W. Zimelka
  • H. -J. Rehm
Multi-Author Review

Summary

Oxygen concentrations were measured in single Ca-alginate beads using polarographic microneedle electrodes. To obtain reliable results the effects of mechanical pressure on the electrode as well as the influence of free Ca2+-ions had to be compensated. No oxygen gradients were detectable in cell-free alginate beads, whereas in beads with entrapped cells ofEnterobacter cloacae steep oxygen gradients were observed. The steepness of these gradients depended on the bacterial growth in the gel. At the end of the logarithmic phase of growth the maximum depth of oxygen penetration into a bead of about 3 mm in diameter was in the range of 150 μm; i.e. nearly 70% of the volume of the alginate beads was free of oxygen.

Key words

Oxygen gradients Ca-alginate pO2-microelectrodes immobilized microorganisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumgärtl, H., Systematic investigations of needle electrode properties in polarographic measurements of local tissue pO2 in: Clinical Oxygen Pressure Measurement, p. 17–42. Eds A. M. Ehrly, J. Hauss and R. Huch. Springer, Heidelberg 1987.Google Scholar
  2. 2.
    Baumgärtl, H., and Lübbers, D. W., Microcoaxial needle sensor for polarographic measurement of local O2 pressure in the cellular range of living tissue. Its construction and properties, in: Polarographic Oxygen Sensors, p. 37–65. Eds E. Gnaiger and H. Forstner. Springer, Heidelberg 1983.Google Scholar
  3. 3.
    Baumgärtl, H., and Lübbers, D. W., Die Bedeutung der Membran bei polarographisch arbeitenden O2-Sensoren — insbesondere bei der Mikronadelektrode — für die absolute pO2-Messung in Flüssigkeiten und Geweben, in: Atemgaswechsel und O2-Versorgung der Organe, p. 155–171. Eds J. Grote and E. Witzleb. Frank Steiner, Stuttgart 1987.Google Scholar
  4. 4.
    Beunink, J., and Rehm, H. J., Synchronous anaerobic and aerobic degradation of DDT by an immobilized mixed culture system. Appl. Microbiol. Biotech.29 (1988) 72–80.Google Scholar
  5. 5.
    Bungay, H. R., Whalen, W. J., and Sanders, W. M., Microprobe techniques for determining diffusivities and respiration rates in microbial slime systems. Biotech. Bioeng.11 (1969) 765–772.Google Scholar
  6. 6.
    Chang, H. N., and Moo-Young, M., Estimation of oxygen penetration depth in immobilized cells. Appl. Microbiol. Biotech.29 (1988) 107–112.Google Scholar
  7. 7.
    Chen, Y. S., and Bungay, H. R., Microelectrode studies of oxygen transfer in trickling filter slimes. Biotech. Bioeng.23 (1981) 781–792.Google Scholar
  8. 8.
    Chen, K.-Ch., and Huang, Ch.-T., Effects of the growth ofTrichosporon cutaneum in calcium alginate gel beads upon bead structure and oxygen transfer characteristics. Enzyme Microb. Technol.10 (1988) 284–292.Google Scholar
  9. 9.
    Chen, T. L., and Humphrey, A. E., Estimation of critical particle diameters for optimal respiration of gel entrapped and/or pelletized microbial cells. Biotech. Lett.10 (1988) 699–702.Google Scholar
  10. 10.
    Eikmeier, H., and Rehm, H. J., Stability of calcium-alginate during citric acid production of immobilizedAspergillus niger. Appl. Microbiol. Biotech.26 (1987) 105–111.Google Scholar
  11. 11.
    Eikmeier, H., Westmeier, F., and Rehm, H. J., Morphological development ofAspergillus niger immobilized in Ca-alginate andk-carrageeman. Appl. Microbiol. Biotech.12 (1984) 53–57.Google Scholar
  12. 12.
    Enfors, S. O., and Mattiasson, B., Oxygenation of processes involving immobilized cells, in: Immobilized cells and Organelles, vol. II, p. 41–60. Ed. B. Mattiasson. CRC-Press, Boca Raton 1983.Google Scholar
  13. 13.
    Gosman, B., and Rehm, H. J., Oxygen uptake of microorganisms entrapped in Ca-alginate. Appl. Microbiol. Biotech.23 (1986) 163–167.Google Scholar
  14. 14.
    Gosmann, B., and Rehm, H. J., Influence of growth behaviour and physiology of alginate entrapped microorganism on the oxygen consumption. Appl. Microciol. Biotech.29 (1988) 554–559.Google Scholar
  15. 15.
    Huang, M. Y., and Bungay, H. R., Microprobe measurements of oxygen concentrations in mycelial pellets. Biotech. Bioeng.15 (1973) 1193–1197.Google Scholar
  16. 16.
    Hutten, H., Meiners, K., and Zander, R., Ein polarographisches Verfahren zur Bestimmung von Sauerstoff-Löslichkeitskoeffizienten in wäßrigen Elektrolytlösungen. Biomed. Technol.27 (1982) 7–13.Google Scholar
  17. 17.
    Karube, I., Kuriyama, S., Matsunaga, T., and Suzuki, S., Methane production from wastewaters by immobilized methanogenic bacteria. Biotech. Bioeng.22 (1980) 847–857.Google Scholar
  18. 18.
    Karube, I., Matsunaga, T., Otomine, Y., and Suzuki, S., Nitrogen fixation by immobilizedAzotobacter chroococcum. Enzyme Microbiol. Technol.3 (1981) 309–312.Google Scholar
  19. 19.
    Kokufuta, E., Shimohashi, M., and Nakamura, I., Simultaneously occurring nitrification and dentrification under oxygen gradient by polyelectrolyte complex-coimmobilizedNitrosomonas europea andParacoccus denitrificans. Biotech. Bioeng.31 (1988) 382–384.Google Scholar
  20. 20.
    Kurosawa, H., Ishikawa, H., and Tanaka, H., L-Lactic acid production from starch by coimmobilized mixed culture system ofAspergillus awamori andStreptococcus lactis. Biotech. Bioeng.31 (1988) 183–187.Google Scholar
  21. 21.
    Kurosawa, H., Nomura, N., and Tanaka, H., Ethanol production from starch by a coimmobilized mixed culture system ofAspergillus awamori andSacccharomyces cerevisiae. Biotech. Bioeng.33 (1989) 716–723.Google Scholar
  22. 22.
    Pfennig, N., and Lippert, K. D., Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Archs Microbiol.55 (1966) 245–256.Google Scholar
  23. 23.
    Schuchhardt, S., and Lösse, B., Methodological problems when measuring with pO2-needle electrodes in semisolid media. in: Oxygen Supply, p. 108–109. Eds M. Kessler, D. F. Bruley, L. C. Clark, D. W. Lübbers, I. A. Silver and J. Strauss. Urban & Schwarzenberg, München 1973.Google Scholar
  24. 24.
    Tanaka, H., Kurosawa, H., and Murakami, H., Ethanol production from starch by a coimmobilized mixed culture system ofAspergillus awamori andZymomonas mobilis. Biotech. Bioeng.28 (1986) 1024–1036.Google Scholar

Copyright information

© Birkhäuser Verlag 1989

Authors and Affiliations

  • J. Beunink
    • 1
  • H. Baumgärtl
    • 2
  • W. Zimelka
    • 2
  • H. -J. Rehm
    • 1
  1. 1.Institut für MikrobiologieUniversität MünsterMünsterGermany
  2. 2.Max-Planck-Institut für SystemphysiologieDortmundGermany

Personalised recommendations