Experientia

, Volume 41, Issue 11, pp 1384–1388 | Cite as

Chemical evidence for interactions between vitamins E and C

  • P. Lambelet
  • F. Saucy
  • J. Löliger
Full Papers

Summary

Experimental proof is provided for interactions between radicals of vitamin E/vitamin C as generated by air-oxidized lipids (liquid fraction of subcutaneous chicken fat). Using ESR spectroscopy, hydrogen atom exchange is shown to take place between vitamin C and the radical of vitamin E. Sequential consumption of these two vitamins in oxidized lipid, first vitamin C then vitamin E, is demonstrated by means of differential pulse polarography. These results elucidate the in vitro radical scavenging functions attributed to vitamin E and vitamin C as well as their synergism in lipid antioxidation.

Key words

ESR vitamin E vitamin C antioxidation radical exchange mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.
    Ames, B.N., Dietary carcinogens and anticarcinogens. Science221 (1983) 1256–1264.Google Scholar
  2. 3.
    Ames, B.N., Cathcart, R., Schwiers, E., and Hochstein, P., Uric acid provides an antioxidant defense in humans against oxidant, and radical-caused ageing and cancer: A hypothesis. Proc. natn. Acad. Sci. USA78 (1981) 6858–6862.Google Scholar
  3. 4.
    Barclay, L.R.C., Locke, S.J., and MacNeil, J.M., The autoxidation of unsaturated lipids in micelles. Synergism of inhibitors: Vitamin C and E. Can. J. Chem.61 (1983) 1288–1290.Google Scholar
  4. 5.
    Barclay, L.R.C., Locke, S.J., MacNeil, J.M., Van Kessel, J., Burton, G.W., and Ingold, K.U., Autoxidation of micelles and model membranes. Quantitative kinetic measurements can be made by using either water-soluble or lipid-soluble initiators with water-soluble or lipid-soluble chain-breaking antioxidants. J. Am. chem. Soc.106 (1984) 2479–2481.Google Scholar
  5. 6.
    Bascetta, E., Gunstone, F.D., and Walton, J.C., Electron spin resonance study of the role of Vitamin E and Vitamin C in the inhibition of fatty acid oxidation in a model membrane. Chem. Phys. Lipids33 (1983) 207–210.Google Scholar
  6. 7.
    Bond, A.M., Modern polarographic methods in analytical chemistry. Dekker, New York and Basel 1980.Google Scholar
  7. 8.
    Burton, G.W., and Ingold, K.U.,β-Carotene: an unusual type of lipid antioxidant. Science224 (1984) 569–573.Google Scholar
  8. 9.
    Cort, W.M., antioxidant properties of ascorbic acid in Foods, in: Ascorbic Acid: Chemistry, metabolism and uses, pp. 533–550. Eds P. Seib and B.M. Tolbert. American Chemical Society, Washington 1982.Google Scholar
  9. 10.
    Crary, E.J., McCarty, S., McCarty, G., and McCarty, M.F., Potential Clinical Applications for high-dose nutritional antioxidants. Med. Hypothesis13 (1984) 77–98.Google Scholar
  10. 11.
    Edmondson, D.E., Groeseneken, D.R., Lontie, R.A., Lynch, R.E., Müller, F., and Tollin, G., Radicals in Biochemistry. Springer, Berlin 1983.Google Scholar
  11. 12.
    Finley, J.W., and Schwass, D.E., Xenobiotics in foods and feeds. American Chemical Society Symposium Series, American Chemical Society, Washington 1983.Google Scholar
  12. 13.
    Friedovic, I., Biological Sources of O2, in: Methods in Enzymology, vol. 105: Organic Radicals in Biological Systems, pp. 59–60. Ed. L. Packer. Academic Press, New York 1984.Google Scholar
  13. 14.
    Friedovic, I., The Biology of Oxygen Radicals. Science201 (1978) 875–880.Google Scholar
  14. 15.
    Gilbert, D.L., Oxygen and Living Processes, an Interdisciplinary Approach. Springer, New York 1981.Google Scholar
  15. 16.
    Lambelet, P., and Löliger, J., The Fate of Antioxidant Radicals during Lipid Autoxidation. I. The Tocopheroxyl Radicals. Chem. Phys. Lipids35 (1984) 185–198.Google Scholar
  16. 17.
    Laroff, G.P., Fessenden, R.W., and Schuler, R.H., The electron spin responance spectra of radical intermediates in the oxidation of ascorbic acid and related substances. J. Am. chem. Soc.94 (1972) 9062–9073.Google Scholar
  17. 18.
    Löliger, J., and Saucy, F., Rapid determination of antioxidants with an electrochemical flow-through detector. Z. Lebensm. Unters. Forsch.170 (1980) 413–416.Google Scholar
  18. 19.
    Löliger, J., Lambelet, P., Savoy, M.-C., and Sancy, F., Free radical exchange reactions between Vitamin E and Vitamin C in peroxidizing lipids, in Seventeenth international symposium on free radicals. Granby, Colorado, USA, August 18–23, 1985.Google Scholar
  19. 20.
    Niki, E., Saito, T., and Kamiya, Y., The role of Vitamin C as an antioxidant. Chem. Lett. (1983) 631–632.Google Scholar
  20. 21.
    Niki, E., Tsuchiya, J., Tanimura, J., and Kamiya, Y., Regeneration of Vitamin E from α-chromanoxyl radical by glutathione and Vitamin C. Chem. Lett. (1982) 789–792.Google Scholar
  21. 22.
    Niki, E., Yamamoto, Y., and Kamiya, Y., Oxidation of Phosphatidylcholine and its inhibition by Vitamin E and Vitamin C, in: Oxygen radicals in chemistry and biology, pp. 273–280. Eds W. Bors, M. Saran and D. Tait. Walter de Gruyter & Co., Berlin 1984.Google Scholar
  22. 23.
    Packer, J.E., Slater, T.F., and Willson, R.L., Direct observation of a free radical interaction between Vitamin E and Vitamin C. Nature278 (1979) 737–738.Google Scholar
  23. 24.
    Peto, R., Doll, R., Buckley, J.D., and Sporn, M.B., Can dietaryβ-carotene materially reduce human cancer rates? Nature290 (1981) 201–208.Google Scholar
  24. 25.
    Pongracz, G., and Kläui, H., Ascorbic acid and its derivatives as antioxidants in oils and fats, in: Vitamin C, Ascorbic acid, pp. 139–166. Eds J.N. Consell and D.H. Horning. Applied Science Publishers, London 1981.Google Scholar
  25. 26.
    Scott, M.L., Vitamin E, in: Handbook of lipid research 2. The fat soluble vitamins, pp. 133–210. Ed. H.F. DeLuca. Plenum Press, New York 1978.Google Scholar
  26. 27.
    Smith, R.C., and Lawing, L., Antioxidant activity of uric acid and 3-N ribosyluric acid with unsaturated fatty acids and erythrocyte membranes. Arch. Biochem. Biophys.223 (1983) 166–172.Google Scholar
  27. 28.
    Tappel, A.L., Will antioxidant nutrients slow ageing processes? Geriatrics23 (1968) 97–105.Google Scholar
  28. 29.
    Walton, J.R., and Packer, L., Free radical damage and protection: Relationship to cellular ageing and cancer, in: Vitamin E, a comprehensive treatise, pp. 495–517. Ed. L.J. Machlin. Dekker, Basel 1980.Google Scholar
  29. 30.
    Willson, R.L., Free radical protection: Why Vitamin E, not Vitamin C,β-carotene or glutathione? in: Biology of Vitamin E, Ciba Foundation Symposium, 101, pp. 19–44. Pitman, London 1983.Google Scholar
  30. 31.
    Willson, R.L., Peroxy free radicals and enzyme inactivation in radiation injury and oxygen toxicity: protection by superoxide dismutase and antioxidants. Lancet (1984) 804.Google Scholar
  31. 32.
    Wittig, L.A., Vitamin E and lipid antioxidants in free-radical-initiated reactions. in: Free radicals in Biology, vol. IV, pp. 295–319. Ed. W.A. Pryor. Academic Press, New York 1980.Google Scholar

Copyright information

© Birkhäuser Verlag 1985

Authors and Affiliations

  • P. Lambelet
    • 1
  • F. Saucy
    • 1
  • J. Löliger
    • 1
  1. 1.Nestlé, Research DepartmentNestec Ltd.Vevey(Switzerland)

Personalised recommendations