Advertisement

Experientia

, Volume 35, Issue 8, pp 991–992 | Cite as

The stimulation of rat brain monoamine oxidase by dietary lithium chloride

  • I. Dawood
  • W. WelchJr
Specialia

Summary

Lithium chloride administered to rats in drinking water for 30 days caused an increase of whole brain monoamine oxidase specific activity to approximately 140% of control. Carboxylesterase and formyltetrahydrofolate synthetase activities were not affected by Li+ either in vivo or in vitro.

Keywords

Chloride Lithium Drinking Water Monoamine Monoamine Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Mendels and S.K. Secunda, in: Lithium in Medicine. Gordon and Breach, London 1972.Google Scholar
  2. 2.
    A. Prange, J. Ian, C. Wilson, C.W. Lynn, L.B. Alltop and R.A. Stikeleather, Archs gen. Psychiat.30, 56 (1974).Google Scholar
  3. 3.
    F.A. Jenner, Biochem. Soc. Trans.1, 88 (1973).Google Scholar
  4. 4.
    A. Coppen, Biochem. Soc. Trans.1, 74 (1973).Google Scholar
  5. 5.
    B. Shoppin and S. Gershon, in: Brain Chemistry and Mental Disease, p. 319. Ed. B.T. Ho and W.M. McIsaac. Plenum Press, New York 1971.Google Scholar
  6. 6.
    P.A. Berger, Science200, 974 (1978).Google Scholar
  7. 7.
    H. Zull, P.O.G. Therman and J.M. Myers, Am. J. Psychiat.125, 549 (1968).Google Scholar
  8. 8.
    R.J. Baldessarini, in: The Nature and Treatment of Depression, p. 347. Ed. F.F. Flach and S.C. Draghi. Wiley, New York 1975.Google Scholar
  9. 9.
    D.M. Shaw, in: Lithium Research and Therapy, p. 411. Ed. F.N. Johnson. Academic Press, London 1975.Google Scholar
  10. 10.
    D.M. Shaw, Biochem. Soc. Trans.1, 78 (1973).Google Scholar
  11. 11.
    S. Knapp and A.J. Mandell, Science180, 645 (1973).Google Scholar
  12. 12.
    R.L. Blakely, Biochem. J.65, 331 (1957).Google Scholar
  13. 13.
    C.E. Samuel, L. D'Ari and J.C. Rabinowitz, J. biol. Chem.245, 5115 (1970).Google Scholar
  14. 14.
    J. Hawkins, Biochem. J.50, 577 (1952).Google Scholar
  15. 15.
    K.G. Gey and A. Pletscher, J. Neurochem.6, 239 (1961).Google Scholar
  16. 16.
    A.L. Green and T.M. Haughton, Biochem. J.78, 172 (1961).Google Scholar
  17. 17.
    N.H. Creasy, Biochem. J.64, 178 (1956).Google Scholar
  18. 18.
    J.C. Rabinowitz and W.E. Pricer, Jr, J. biol. Chem.237, 2898 (1962). The reaction was terminated by addition of 0.5 ml of 10% trichloroacetic acid.Google Scholar
  19. 19.
    C. Huggins and J. Lapides, J. biol. Chem.170, 467 (1947).Google Scholar
  20. 20.
    C. Goridis and N.H. Neff, J. Neurochem.18, 1673 (1971).Google Scholar
  21. 21.
    C. Goridis and N.H. Neff, Br. J. Pharmac.43, 814 (1971).Google Scholar
  22. 22.
    E.O. Oswald and C.F. Strittmatter, Proc. Soc. exp. Biol. Med.114, 668 (1963).Google Scholar
  23. 23.
    J.P. Johnston, Biochem. Pharmac.17, 1285 (1968).Google Scholar
  24. 24.
    K.F. Tipton, M.D. Housley and N.J. Garrett, Nature New Biol.246, 213 (1973).Google Scholar
  25. 25.
    A.N. Davison, Biochem. J.67, 316 (1957).Google Scholar
  26. 26.
    D.W.R. Hall, B.W. Logan and G.H. Parsons, Biochem. Pharmac.18, 1447 (1969).Google Scholar
  27. 27.
    L.A. Abreau and R.R. Abreau, Experientia30, 1056 (1974).Google Scholar
  28. 28.
    L.A. Abreau and R.R. Abreau, Experientia29, 446 (1973).Google Scholar
  29. 29.
    S.M. Schanburg, J.J. Schildkraut and J.J. Kopin, Biochem. Pharmac.16, 393 (1967).Google Scholar
  30. 30.
    R.R. Fieve and D.L. Dunner, in: The Nature and Treatment of Depression, p. 145. Ed. F.F. Flach and S.C. Draghi, Wiley and Sons, New York 1975.Google Scholar
  31. 31.
    J. Bockar, R. Roth and G. Heninger, Life Sci.15, 2109 (1975).Google Scholar
  32. 32.
    R.W. Colburn, F.K. Goodwin, W.E. Bunney, Jr, and J.M. Davis, Nature215, 1395 (1967).Google Scholar
  33. 33.
    L.A. Abreau and R.R. Abreau, Nature New Biol.236, 254 (1972).Google Scholar
  34. 34.
    E.T. Mellerup and O.J. Rafaelsen, in: Lithium Research and Therapy, p. 381. Ed. F.M. Johnson. Academic Press, London 1975.Google Scholar
  35. 35.
    M.H. Bera and G.C. Chatterjee, Biochem. Pharmac.25, 1554 (1976).Google Scholar
  36. 36.
    M. Schou, Biochem. Soc. Trans.1, 81 (1973).Google Scholar
  37. 37.
    D. Samuel and Z. Gottesfeld, Endeavour32, 122 (1973).Google Scholar
  38. 38.
    M.B.H. Youdim, M. Holzbauer and H.F. Woods, Adv. Biochem. Psychopharmac.12, 11 (1974).Google Scholar
  39. 39.
    M. Holtzbauer and M.B.H. Youdim, Br. J. Pharmac.48, 600 (1973).Google Scholar
  40. 40.
    J.A. Kanberi and Y. Kobayaske, J. Neurochem.17, 261 (1970).Google Scholar
  41. 41.
    M.M. Salseduc, I.J. Jofre and J.A. Ixquierdo, Med. Pharmac. exp.14, 113 (1966).Google Scholar
  42. 42.
    A.J. Zolovick, R. Pearse, K.W. Boehlke and B.E. Eleftheriou, Science154, 649 (1966).Google Scholar
  43. 43.
    V.A. Grantyn and B.V. Ivanova, Bull. exp. Biol. Med.78, 1066 (1974).Google Scholar
  44. 44.
    G.G.S. Collins, J. Pryse-Davies, M. Sandler and J. Southgate, Nature226, 642 (1970).Google Scholar
  45. 45.
    A. Mandell and S. Knapp, in: Behavioral Neurochemistry, p. 223. Ed. J.M. Delgado and F.V. DeFeudis. Spectrum, New York 1977.Google Scholar
  46. 46.
    R.B. Rastogi and R.L. Singhal, Can. J. Physiol. Pharmac.55, 490 (1977).Google Scholar

Copyright information

© Birkhäuser Verlag 1979

Authors and Affiliations

  • I. Dawood
    • 1
  • W. WelchJr
    • 1
  1. 1.Department of BiochemistryUniversity of NevadaRenoUSA

Personalised recommendations